45 research outputs found

    Graph theoretical framework of brain networks in multiple sclerosis: a review of concepts

    Get PDF
    Network science provides powerful access to essential organizational principles of the human brain. It has been applied in combination with graph theory to characterize brain connectivity patterns. In multiple sclerosis (MS), analysis of the brain networks derived from either structural or functional imaging provides new insights into pathological processes within the gray and white matter. Beyond focal lesions and diffuse tissue damage, network connectivity patterns could be important for closely tracking and predicting the disease course. In this review, we describe concepts of graph theory, highlight novel issues of tissue reorganization in acute and chronic neuroinflammation and address pitfalls with regard to network analysis in MS patients. We further provide an outline of functional and structural connectivity patterns observed in MS, spanning from disconnection and disruption on one hand to adaptation and compensation on the other. Moreover, we link network changes and their relation to clinical disability based on the current literature. Finally, we discuss the perspective of network science in MS for future research and postulate its role in the clinical framework

    Frontal lobe connectivity and network community characteristics are associated with the outcome of subthalamic nucleus deep brain stimulation in patients with Parkinson's disease

    Get PDF
    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is nowadays an evidence-based state of the art therapy option for motor and non-motor symptoms in patients with Parkinson’s disease (PD). However, the exact anatomical regions of the cerebral network that are targeted by STN–DBS have not been precisely described and no definitive pre-intervention predictors of the clinical response exist. In this study, we test the hypothesis that the clinical effectiveness of STN–DBS depends on the connectivity profile of the targeted brain networks. Therefore, we used diffusion-weighted imaging (DWI) and probabilistic tractography to reconstruct the anatomical networks and the graph theoretical framework to quantify the connectivity profile. DWI was obtained pre-operatively from 15 PD patients who underwent DBS (mean age = 67.87 ± 7.88, 11 males, H&Y score = 3.5 ± 0.8) using a 3T MRI scanner (Philips Achieva). The pre-operative connectivity properties of a network encompassing frontal, prefrontal cortex and cingulate gyrus were directly linked to the postoperative clinical outcome. Eccentricity as a topological-characteristic of the network defining how cerebral regions are embedded in relation to distant sites correlated inversely with the applied voltage at the active electrode for optimal clinical response. We found that network topology and pre-operative connectivity patterns have direct influence on the clinical response to DBS and may serve as important and independent predictors of the postoperative clinical outcome

    Improved prediction of early cognitive impairment in multiple sclerosis combining blood and imaging biomarkers

    Get PDF
    Disability in multiple sclerosis is generally classified by sensory and motor symptoms, yet cognitive impairment has been identified as a frequent manifestation already in the early disease stages. Imaging- and more recently blood-based biomarkers have become increasingly important for understanding cognitive decline associated with multiple sclerosis. Thus, we sought to determine the prognostic utility of serum neurofilament light chain levels alone and in combination with MRI markers by examining their ability to predict cognitive impairment in early multiple sclerosis. A comprehensive and detailed assessment of 152 early multiple sclerosis patients (Expanded Disability Status Scale: 1.3 ± 1.2, mean age: 33.0 ± 10.0 years) was performed, which included serum neurofilament light chain measurement, MRI markers (i.e. T2-hyperintense lesion volume and grey matter volume) acquisition and completion of a set of cognitive tests (Symbol Digits Modalities Test, Paced Auditory Serial Addition Test, Verbal Learning and Memory Test) and mood questionnaires (Hospital Anxiety and Depression scale, Fatigue Scale for Motor and Cognitive Functions). Support vector regression, a branch of unsupervised machine learning, was applied to test serum neurofilament light chain and combination models of biomarkers for the prediction of neuropsychological test performance. The support vector regression results were validated in a replication cohort of 101 early multiple sclerosis patients (Expanded Disability Status Scale: 1.1 ± 1.2, mean age: 34.4 ± 10.6 years). Higher serum neurofilament light chain levels were associated with worse Symbol Digits Modalities Test scores after adjusting for age, sex Expanded Disability Status Scale, disease duration and disease-modifying therapy (B = −0.561; SE = 0.192; P = 0.004; 95% CI = −0.940 to −0.182). Besides this association, serum neurofilament light chain levels were not linked to any other cognitive or mood measures (all P-values > 0.05). The tripartite combination of serum neurofilament light chain levels, lesion volume and grey matter volume showed a cross-validated accuracy of 88.7% (90.8% in the replication cohort) in predicting Symbol Digits Modalities Test performance in the support vector regression approach, and outperformed each single biomarker (accuracy range: 68.6–75.6% and 68.9–77.8% in the replication cohort), as well as the dual biomarker combinations (accuracy range: 71.8–82.3% and 72.6–85.6% in the replication cohort). Taken together, early neuro-axonal loss reflects worse information processing speed, the key deficit underlying cognitive dysfunction in multiple sclerosis. Our findings demonstrate that combining blood and imaging measures improves the accuracy of predicting cognitive impairment, highlighting the clinical utility of cross-modal biomarkers in multiple sclerosis

    Network alterations underlying anxiety symptoms in early multiple sclerosis

    Get PDF
    Background: Anxiety, often seen as comorbidity in multiple sclerosis (MS), is a frequent neuropsychiatric symptom and essentially afects the overall disease burden. Here, we aimed to decipher anxiety-related networks functionally connected to atrophied areas in patients sufering from MS. Methods: Using 3-T MRI, anxiety-related atrophy maps were generated by correlating longitudinal cortical thinning with the severity of anxiety symptoms in MS patients. To determine brain regions functionally connected to these maps, we applied a technique termed “atrophy network mapping”. Thereby, the anxiety-related atrophy maps were projected onto a large normative connectome (n=1000) performing seed‐based functional connectivity. Finally, an instructed threat paradigm was conducted with regard to neural excitability and efective connectivity, using transcranial magnetic stimulation combined with high-density electroencephalography. Results: Thinning of the left dorsal prefrontal cortex was the only region that was associated with higher anxiety levels. Atrophy network mapping identifed functional involvement of bilateral prefrontal cortex as well as amygdala and hippocampus. Structural equation modeling confrmed that the volumes of these brain regions were signifcant determinants that infuence anxiety symptoms in MS. We additionally identifed reduced information fow between the prefrontal cortex and the amygdala at rest, and pathologically increased excitability in the prefrontal cortex in MS patients as compared to controls. Conclusion: Anxiety-related prefrontal cortical atrophy in MS leads to a specifc network alteration involving structures that resemble known neurobiological anxiety circuits. These fndings elucidate the emergence of anxiety as part of the disease pathology and might ultimately enable targeted treatment approaches modulating brain networks in MS. Keywords: Multiple sclerosis, Anxiety, Atrophy, Functional connectivity, Excitabilit

    Gray matter integrity predicts white matter network reorganization in multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease leading to gray matter atrophy and brain network reconfiguration as a response to increasing tissue damage. We evaluated whether white matter network reconfiguration appears subsequently to gray matter damage, or whether the gray matter degenerates following alterations in white matter networks. MRI data from 83 patients with clinically isolated syndrome and early relapsing–remitting MS were acquired at two time points with a follow-up after 1 year. White matter network integrity was assessed based on probabilistic tractography performed on diffusion-weighted data using graph theoretical analyses. We evaluated gray matter integrity by computing cortical thickness and deep gray matter volume in 94 regions at both time points. The thickness of middle temporal cortex and the volume of deep gray matter regions including thalamus, caudate, putamen, and brain stem showed significant atrophy between baseline and follow-up. White matter network dynamics, as defined by modularity and distance measure changes over time, were predicted by deep gray matter volume of the atrophying anatomical structures. Initial white matter network properties, on the other hand, did not predict atrophy. Furthermore, gray matter integrity at baseline significantly predicted physical disability at 1-year follow-up. In a sub-analysis, deep gray matter volume was significantly related to cognitive performance at baseline. Hence, we postulate that atrophy of deep gray matter structures drives the adaptation of white matter networks. Moreover, deep gray matter volumes are highly predictive for disability progression and cognitive performance

    Serum neurofilament levels reflect outer retinal layer changes in multiple sclerosis

    Get PDF
    Background:Serum neurofilament light chain (sNfL) and distinct intra-retinal layers are both promising biomarkers of neuro-axonal injury in multiple sclerosis (MS). We aimed to unravel the association of both markers in early MS, having identified that neurofilament has a distinct immunohistochemical expression pattern among intra-retinal layers. Methods:Three-dimensional (3D) spectral domain macular optical coherence tomography scans and sNfL levels were investigated in 156 early MS patients (female/male: 109/47, mean age: 33.3 ± 9.5 years, mean disease duration: 2.0 ± 3.3 years). Out of the whole cohort, 110 patients had no history of optic neuritis (NHON) and 46 patients had a previous history of optic neuritis (HON). In addition, a subgroup of patients (n = 38) was studied longitudinally over 2 years. Support vector machine analysis was applied to test a regression model for significant changes. Results:In our cohort, HON patients had a thinner outer plexiform layer (OPL) volume compared to NHON patients (B = −0.016, SE = 0.006, p = 0.013). Higher sNfL levels were significantly associated with thinner OPL volumes in HON patients (B = −6.734, SE = 2.514, p = 0.011). This finding was corroborated in the longitudinal subanalysis by the association of higher sNfL levels with OPL atrophy (B = 5.974, SE = 2.420, p = 0.019). sNfL levels were 75.7% accurate at predicting OPL volume in the supervised machine learning. Conclusions:In summary, sNfL levels were a good predictor of future outer retinal thinning in MS. Changes within the neurofilament-rich OPL could be considered as an additional retinal marker linked to MS neurodegeneration

    Covarying patterns of white matter lesions and cortical atrophy predict progression in early MS

    Get PDF
    Objective We applied longitudinal 3T MRI and advanced computational models in 2 independent cohorts of patients with early MS to investigate how white matter (WM) lesion distribution and cortical atrophy topographically interrelate and affect functional disability. Methods Clinical disability was measured using the Expanded Disability Status Scale Score at baseline and at 1-year follow-up in a cohort of 119 patients with early relapsing-remitting MS and in a replication cohort of 81 patients. Covarying patterns of cortical atrophy and baseline lesion distribution were extracted by parallel independent component analysis. Predictive power of covarying patterns for disability progression was tested by receiver operating characteristic analysis at the group level and support vector machine for individual patient outcome. Results In the study cohort, we identified 3 distinct distribution types of WM lesions (cerebellar, bihemispheric, and left lateralized) that were associated with characteristic cortical atrophy distributions. The cerebellar and left-lateralized patterns were reproducibly detected in the second cohort. Each of the patterns predicted to different extents, short-term disability progression, whereas the cerebellar pattern was associated with the highest risk of clinical worsening, predicting individual disability progression with an accuracy of 88% (study cohort) and 89% (replication cohort), respectively. Conclusion These findings highlight the role of distinct spatial distribution of cortical atrophy and WM lesions predicting disability. The cerebellar involvement is shown as a key determinant of rapid clinical deterioration

    Selective brain network and cellular responses upon dimethyl fumarate immunomodulation in multiple sclerosis

    Get PDF
    Background Efficient personalized therapy paradigms are needed to modify the disease course and halt gray (GM) and white matter (WM) damage in patients with multiple sclerosis (MS). Presently, promising disease-modifying drugs show impressive efficiency, however, tailored markers of therapy responses are required. Here, we aimed to detect in a real-world setting patients with a more favorable brain network response and immune cell dynamics upon dimethyl fumarate (DMF) treatment. Methods In a cohort of 78 MS patients we identified two thoroughly matched groups, based on age, disease duration, disability status and lesion volume, receiving DMF (n = 42) and NAT (n = 36) and followed them over 16 months. The rate of cortical atrophy and deep GM volumes were quantified. GM and WM network responses were characterized by brain modularization as a marker of regional and global structural alterations. In the DMF group, lymphocyte subsets were analyzed by flow cytometry and related to clinical and MRI parameters. Results Sixty percent (25 patients) of the DMF and 36% (13 patients) of the NAT group had disease activity during the study period. The rate of cortical atrophy was higher in the DMF group (−2.4%) compared to NAT (−2.1%, p < 0.05) group. GM and WM network dynamics presented increased modularization in both groups. When dividing the DMF-treated cohort into patients free of disease activity (n = 17, DMFR) and patients with disease activity (n = 25, DMFNR) these groups differed significantly in CD8+ cell depletion counts (DMFR: 197.7 ± 97.1/μl; DMFNR: 298.4 ± 190.6/μl, p = 0.03) and also in cortical atrophy (DMFR: −1.7%; DMFNR: −3.2%, p = 0.01). DMFR presented reduced longitudinal GM and WM modularization and less atrophy as markers of preserved structural global network integrity in comparison to DMFNR and even NAT patients. Conclusions NAT treatment contributes to a reduced rate of cortical atrophy compared to DMF therapy. However, patients under DMF treatment with a stronger CD8+ T cell depletion present a more favorable response in terms of cortical integrity and GM and WM network responses. Our findings may serve as basis for the development of personalized treatment paradigms
    corecore