19 research outputs found

    Exposure to ambient concentrations of particulate air pollution does not influence vascular function or inflammatory pathways in young healthy individuals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Particulate air pollution is associated with increased risk of cardiovascular events although the involved mechanisms are poorly understood. The objective of the present study was to investigate the effects of controlled exposure to ambient air fine and ultrafine particles on microvascular function and biomarkers related to inflammation, haemostasis and lipid and protein oxidation.</p> <p>Methods</p> <p>Twenty-nine subjects participated in a randomized, two-factor crossover study with or without biking exercise for 180 minutes and with 24 hour exposure to particle rich (number concentrations, NC: 11600 ± 5600 per cm<sup>3</sup>, mass concentrations: 13.8 ± 7.4 μg/m<sup>3 </sup>and 10.5 ± 4.8 μg/m<sup>3 </sup>for PM<sub>10-2.5 </sub>and PM<sub>2.5</sub>, respectively) or particle filtered (NC: 555 ± 1053 per cm<sup>3</sup>) air collected above a busy street. Microvascular function was assessed non-invasively by measuring digital peripheral artery tone following arm ischemia. Biomarkers included haemoglobin, red blood cells, platelet count, coagulation factors, C-reactive protein, fibrinogen, interleukin-6, tumour necrosis factor α, lag time to copper-induced oxidation of plasma lipids and protein oxidation measured as 2-aminoadipic semialdehyde in plasma.</p> <p>Results</p> <p>No statistically significant differences were observed on microvascular function or the biomarkers after exposure to particle rich or particle filtered air.</p> <p>Conclusion</p> <p>This study indicates that exposure to air pollution particles at outdoor concentrations is not associated with detectable systemic inflammation, lipid or protein oxidation, altered haemostasis or microvascular function in young healthy participants.</p

    Effects of ambient air particulate exposure on blood-gas barrier permeability and lung function

    No full text
    Particulate air pollution is associated with increased risk of pulmonary diseases and detrimental outcomes related to the cardiovascular system, including altered vessel functions. This study's objective was too evaluate the effects of ambient particle exposure on the blood-gas permeability, lung function and Clara cell 16 (CC16) protein release in healthy young subjects. Twenty-nine nonsmokers participated in a randomized, two-factor crossover study with or without biking exercise for 180 min and with 24-h exposure to particle-rich (6169-15,362 particles/cm(3); 7.0-11.6 microg/m(3) PM(2.5); 7.5-15.8 microg/m(3) PM(10-2.5)) or filtered (91-542 particles/cm(3)) air collected above a busy street. The clearance rate of aerosolized (99m)Tc-labeled diethylenetriamine pentaacetic acid ((99m)Tc-DTPA) was measured as an index for the alveolar epithelial membrane integrity and permeability of the lung blood-gas barrier after rush-hour exposure. Lung function was assessed using body plethysmography, flow-volume curves, and measurements of the diffusion capacity of carbon monoxide. CC16 was measured in plasma and urine as another marker of alveolar integrity. Particulate matter exposure had no significant effect on the epithelial membrane integrity using the methods available in this study. Exercise increased the clearance rate of (99m)Tc-DTPA indicated by a 6.8% (95% CI: 0.4-12.8%) shorter half-life and this was more pronounced in men than women. Neither particulate matter exposure nor exercise had an effect on the concentration of CC16 in plasma and urine or on the static and dynamic volumes or ventilation distribution of the lungs. The study thus demonstrates increased permeability of the alveolar blood-gas barrier following moderate exercise, whereas exposure to ambient levels of urban air particles has no detectable effects on the alveolar blood-gas barrier or lung function
    corecore