286 research outputs found
The blood labyrinthine barrier in the human normal and Meniere's disease macula utricle.
The ultrastructural organization of the blood labyrinthine barrier (BLB) was investigated in the human vestibular endorgan, the utricular macula, using postmortem specimens from individuals with documented normal auditory and vestibular function and surgical specimens from patients with intractable Meniere's disease. Transmission electron microscopic analysis of capillaries located in the normal human utricular stroma showed vascular endothelial cells with few pinocytotic vesicles, covered by a smooth and uniform basement membrane surrounded by pericyte processes. Meniere's disease specimens revealed differential ultrastructural pathological changes in the cellular elements of the microvasculature. With moderate degeneration of the BLB, there were numerous vesicles within the vascular endothelial cells (VECs), with increased numbers at the abluminal face, pericyte process detachment and disruption of the perivascular basement membrane surrounding the VECs. With severe degeneration of the BLB, there was severe vacuolization or frank apparent necrosis of VECs and loss of subcellular organelles. A higher severity of BLB degenerative changes was associated with a higher degree of basement membrane thickening and edematous changes within the vestibular stroma. This study presents the first ultrastructural analysis of the capillaries constituting the BLB in the human vestibular macula utricle from normal and Meniere's disease
Ezrin and Moesin Expression Within the Developing Human Cerebrum and Tuberous Sclerosis-Associated Cortical Tubers.
The ERM (ezrin, radixin, and moesin) proteins belong to the band-4.1 superfamily of membrane-cytoskeleton-linking proteins which bind to the actin cytoskeleton via their C-terminal sequences and bind ERM binding membrane proteins (ERMBMPs). We investigated the immunohistochemical expression of two of the ERM proteins (ezrin and moesin) in developing human cerebral cortex and in cortical tubers from patients with tuberous sclerosis (TSC), to assess possible consequences of TSC gene product malfunction or inactivation in the developing brain in relation to ERM protein expression. Ezrin is abundantly expressed within radial glia and migrating cells in the intermediate zone in the prenatal human cerebrum, while moesin is primarily expressed in vascular endothelial cells in developing and adult human brain and scattered microglia in adult brain. In addition, both ezrin and moesin are abundantly co-expressed with hamartin and tuberin within a population of abnormal cells in TSC-associated cortical tubers. The expression of these two proteins--primarily ezrin--suggests that they are developmentally regulated and abundantly expressed in germinal matrix and/or migrating cells during cerebral cortical development. In TSC-associated cortical tubers, both proteins appeared to be up-regulated and are co-localized within a population of abnormal neuroglial cells typical of those seen in tubers. Expression of these proteins and their co-localization with tuberin and hamartin in these cells may suggest a compensatory up-regulation in response to TSC gene mutation
Recommended from our members
Cellular antiseizure mechanisms of everolimus in pediatric tuberous sclerosis complex, cortical dysplasia, and non-mTOR-mediated etiologies.
The present study was designed to examine the potential cellular antiseizure mechanisms of everolimus, a mechanistic target of rapamycin (mTOR) pathway blocker, in pediatric epilepsy cases. Cortical tissue samples obtained from pediatric patients (n = 11, ages 0.67-6.75 years) undergoing surgical resections for the treatment of their pharmacoresistant epilepsy were examined electrophysiologically in ex vivo slices. The cohort included mTOR-mediated pathologies (tuberous sclerosis complex [TSC] and severe cortical dysplasia [CD]) as well as non-mTOR-mediated pathologies (tumor and perinatal infarct). Bath application of everolimus (2 ÎĽm) had practically no effect on spontaneous inhibitory postsynaptic activity. In contrast, long-term application of everolimus reduced spontaneous excitatory postsynaptic activity, burst discharges induced by blockade of Îł-aminobutyric acid A (GABAA) receptors, and epileptiform activity generated by 4-aminopyridine, a K+ channel blocker. The antiseizure effects were more pronounced in TSC and CD cases, whereas in non-mTOR-mediated pathologies, the effects were subtle at best. These results support further clinical trials of everolimus in mTOR pathway-mediated pathologies and emphasize that the effects require sustained exposure over time
Recommended from our members
Residual Tumor Confers a 10-Fold Increased Risk of Regrowth in Clinically Nonfunctioning Pituitary Tumors.
ObjectiveWe evaluated tumor recurrence and regrowth rates following endoscopic transnasal transsphenoidal (TNTS) surgical removal in a consecutive series of clinically nonfunctioning pituitary adenomas (CNFTs).DesignRetrospective chart review of clinical, biochemical, and sellar MRI findings in all TNTS surgeries in patients with CNFT, performed by a single surgeon, between 2008 and 2015 (n = 280).PatientsNinety-three patients met eligibility criteria, with complete clinical, biochemical, and imaging follow-up for a 3-year minimum.ResultsOf 85 patients who were not irradiated, 3-month postsurgical MRI demonstrated no residual tumor in 58 of 85 (68.2%), equivocal findings in 12 of 85 (14.1%), and definite residual tumor in 15 of 85 (17.6%) patients. Six of 85 (7.1%) demonstrated tumor regrowth by 3 years, and 2 further patients demonstrated true tumor recurrence at 3 and 6 years after surgery, respectively, for a total recurrence rate of 9.4% (8 of 85). Eight of the 93 patients were irradiated between 3 months and 4 years after pituitary surgery. In 3 patients with tumor regrowth, 2 exhibited residual tumor and 1 had no residual findings at the 3-month postoperative imaging. Overall, Ki-67 labeling index or Knosp grading did not predict recurrence.ConclusionTumor recurrence at 3 years was low (1 of 58; 1.7%) if the 3-month postoperative MRI showed no residual tumor. The findings support a less frequent imaging schedule for this group. Patients with definite residual tumor visible at 3 months harbor the greatest risk for tumor growth, but regrowth does not occur in all patients (6 of 15; 40%)
Pineocytoma with diffuse dissemination to the leptomeninges
Pineal parenchymal tumors are rare. Of the three types of pineal parenchymal tumors, pineocytomas are the least aggressive and are not known to diffusely disseminate. In this paper, we report the successful treatment of a case of pineocytoma with diffuse leptomeningeal relapse following initial stereotactic radiotherapy. A 39-year-old female presented with headaches, balance impairment, urinary incontinence, and blunted affect. A pineal mass was discovered on magnetic resonance imaging (MRI). A diagnosis of pineocytoma was established with an endoscopic pineal gland biopsy, and the patient received stereotactic radiotherapy. Ten years later, she developed diffuse leptomeningeal dissemination. The patient was then successfully treated with craniospinal radiation therapy. Leptomeningeal spread may develop as late as 10 years after initial presentation of pineocytoma. Our case demonstrates the importance of long-term follow-up of patients with pineal parenchymal tumors following radiation therapy, and the efficacy of craniospinal radiation in the treatment of leptomeningeal dissemination
Sympathetic Nerve Fibers in Human Cervical and Thoracic Vagus Nerves
Background
Vagus nerve stimulation therapy (VNS) has been used for chronic heart failure (CHF), and is believed to improve imbalance of autonomic control by increasing parasympathetic activity. Although it is known that there is neural communication between the VN and the cervical sympathetic trunk, there are few data regarding the quantity and/or distribution of the sympathetic components within the VN.
Objective
To examine the sympathetic component within human VN and correlate these with the presence of cardiac and neurologic diseases.
Methods
We performed immunohistochemistry on 31 human cervical and thoracic VNs (total 104 VNs) from autopsies and we reviewed the patients’ records. We correlated the quantity of sympathetic nerve fibers within the VNs with cardiovascular and neurologic disease states.
Results
All 104 VNs contain TH positive (sympathetic) nerve fibers; the mean TH positive areas were 5.47% in right cervical, 3.97% in left cervical, 5.11% in right thoracic, and 4.20% in left thoracic VN. The distribution of TH positive nerve fibers varied from case to case: central, peripheral, or scattered throughout nerve bundles. No statistically significant differences in nerve morphology were seen between diseases in which VNS is considered effective (depression and CHF), and other cardiovascular diseases, or neurodegenerative disease.
Conclusion
Human VNs contain sympathetic nerve fibers. The sympathetic component within the VN could play a role in physiologic effects reported with VNS. The recognition of sympathetic nerve fibers in the VNs may lead to better understanding of the therapeutic mechanisms of VNS
Recommended from our members
Enhanced Delivery of Rituximab Into Brain and Lymph Nodes Using Timed-Release Nanocapsules in Non-Human Primates.
Tumor metastasis into the central nervous system (CNS) and lymph nodes (LNs) is a major obstacle for effective therapies. Therapeutic monoclonal antibodies (mAb) have revolutionized tumor treatment; however, their efficacy for treating metastatic tumors-particularly, CNS and LN metastases-is poor due to inefficient penetration into the CNS and LNs following intravenous injection. We recently reported an effective delivery of mAb to the CNS by encapsulating the anti-CD20 mAb rituximab (RTX) within a thin shell of polymer that contains the analogs of choline and acetylcholine receptors. This encapsulated RTX, denoted as n-RTX, eliminated lymphoma cells systemically in a xenografted humanized mouse model using an immunodeficient mouse as a recipient of human hematopoietic stem/progenitor cells and fetal thymus more effectively than native RTX; importantly, n-RTX showed notable anti-tumor effect on CNS metastases which is unable to show by native RTX. As an important step toward future clinical translation of this technology, we further analyzed the properties of n-RTX in immunocompetent animals, rats, and non-human primates (NHPs). Our results show that a single intravenous injection of n-RTX resulted in 10-fold greater levels in the CNS and 2-3-fold greater levels in the LNs of RTX, respectively, than the injection of native RTX in both rats and NHPs. In addition, we demonstrate the enhanced delivery and efficient B-cell depletion in lymphoid organs of NHPs with n-RTX. Moreover, detailed hematological analysis and liver enzyme activity tests indicate n-RTX treatment is safe in NHPs. As this nanocapsule platform can be universally applied to other therapeutic mAbs, it holds great promise for extending mAb therapy to poorly accessible body compartments
- …