22 research outputs found

    Therapeutic efficacy of nanomedicines for prostate cancer: An update

    No full text
    Recent advances in cancer nanomedicine have attracted remarkable attention in medical sectors. Pharmacologic research on nanomedicines, including targeted cancer therapy, has increased dramatically in the past 5 years. The success stories of nanomedicines in the clinical field include the fabrication of nanomedicines that show maximum loading efficiency into carriers, maximal release kinetics, and minimum toxicity to healthy cells. Nanoparticle-mediated medicines have been developed to specifically target prostate cancer tissue by use of aptamers, antibody targeting, and sustained release of nanomedicines in a dose- and timedependent manner. Nanomedicines have been developed for therapeutic application in combination with image-guided therapy in real time. The scope of one of these nanomedicines, Abraxane (paclitaxel), may be extended to prostate cancer therapeutic applications for better quality of patient life and longer survival. This review provides an update on the latest directions and developments in nanomedicines for prostate cancer

    Caractérisation moléculaire et fonctionnelle de MLN64

    No full text
    STRASBOURG-Sc. et Techniques (674822102) / SudocSudocFranceF

    Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment

    No full text
    Background Evaluation of the combinatorial anticancer effects of curcumin/5-fluorouracil loaded thiolated chitosan nanoparticles (CRC-TCS-NPs/5-FU-TCS-NPs) on colon cancer cells and the analysis of pharmacokinetics and biodistribution of CRC-TCS-NPs/5-FU-TCS-NPs in a mouse model. Methods CRC-TCS-NPs/5-FU-TCS-NPs were developed by ionic cross-linking. The in vitro combinatorial anticancer effect of the nanomedicine was proven by different assays. Further the pharmacokinetics and biodistribution analyses were performed in Swiss Albino mouse using HPLC. Results The 5-FU-TCS-NPs (size: 150 ± 40 nm, zeta potential: + 48.2 ± 5 mV) and CRC-TCS-NPs (size: 150 ± 20 nm, zeta potential: + 35.7 ± 3 mV) were proven to be compatible with blood. The in vitro drug release studies at pH 4.5 and 7.4 showed a sustained release profile over a period of 4 days, where both the systems exhibited a higher release in acidic pH. The in vitro combinatorial anticancer effects in colon cancer (HT29) cells using MTT, live/dead, mitochondrial membrane potential and cell cycle analysis measurements confirmed the enhanced anticancer effects (2.5 to 3 fold). The pharmacokinetic studies confirmed the improved plasma concentrations of 5-FU and CRC up to 72 h, unlike bare CRC and 5-FU. Conclusions To conclude, the combination of 5-FU-TCS-NPs and CRC-TCS-NPs showed enhanced anticancer effects on colon cancer cells in vitro and improved the bioavailability of the drugs in vivo. General significance The enhanced anticancer effects of combinatorial nanomedicine are advantageous in terms of reduction in the dosage of 5-FU, thereby improving the chemotherapeutic efficacy and patient compliance of colorectal cancer cases

    In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N,O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies

    No full text
    Colon cancer is the third most leading causes of death due to cancer worldwide and the chemo drug 5-fluorouracil's (5-FU) applicability is limited due to its non-specificity, low bioavailability and overdose. The efficacy of 5-FU in colon cancer chemo treatment could be improved by nanoencapsulation and combinatorial approach. In the present study curcumin (CUR), a known anticancer phytochemical, was used in combination with 5-FU and the work focuses on the development of a combinatorial nanomedicine based on 5-FU and CUR in N,O-carboxymethyl chitosan nanoparticles (N,O-CMC NPs). The developed 5-FU-N,O-CMC NPs and CUR-N,O-CMC NPs were found to be blood compatible. The in vitro drug release profile in pH 4.5 and 7.4 showed a sustained release profile over a period of 4 days. The combined exposure of the nanoformulations in colon cancer cells (HT 29) proved the enhanced anticancer effects. In addition, the in vivo pharmacokinetic data in mouse model revealed the improved plasma concentrations of 5-FU and CUR which prolonged up to 72 h unlike the bare drugs. In conclusion, the 5-FU and CUR released from the N,O-CMC NPs produced enhanced anticancer effects in vitro and improved plasma concentrations under in vivo conditions

    Chitosan-based nanoparticles in cancer therapy

    No full text
    In recent years, many nanotechnology platforms in the area of medical biology, including cancer therapy, have attracted remarkable attention. In particular, research in targeted, polymeric nanoparticles for cancer therapy has increased dramatically in the past 5-10 years. However, the potential success of nanoparticles in the clinic relies on consideration of important parameters such as nanoparticle fabrication strategies, their physical properties, drug loading efficiencies, drug release potential, and, most importantly, minimum toxicity of the carrier itself. Recent work has suggested that chitosan materials hold much promise in advancing nanoparticle-based therapeutics. The field of oncology could soon be revolutionized by novel strategies for therapy employing chitosan-based nanotherapeutics. Several aspects of cancer therapy would be involved. Chitosans can also be applied to a variety of cancer therapies to improve their safety and efficacy. Further applications of chitosans in cancer therapy are being examined. This review focuses on providing brief updates on chitosan nanoparticles for cancer therapy. © 2011 Springer-Verlag Berlin Heidelberg
    corecore