8 research outputs found

    The Roots of Atractylodes macrocephala

    Get PDF
    The root of Atractylodes macrocephala Koidzumi (Atractylodis Rhizoma Alba, ARA) is a Traditional Korean Medicine and has been commonly used for weight control. Mitochondrial dysfunction appears to be a key contributor to insulin resistance, and therefore mitochondrial targeting drugs represent an important potential strategy for the treatment of insulin resistance and obesity. In this study, the authors investigated the regulatory effects of ARA on mitochondrial function with respect to the stimulation of glucose and lipid metabolism in C2C12 myotubes. After differentiating C2C12 myotubes, cells were treated with or without different concentrations (0.2, 0.5, and 1.0 mg/mL) of ARA extract. ARA extract significantly increased the expression of peroxisome proliferator-activated receptor coactivator 1 alpha (PGC1α) and the downregulations of its targets, nuclear respiratory factor-1 (NRF-1), transcription factor A (TFAM), and total ATP content in C2C12 myotubes. ARA extract also increased the expressions of PGC1α activator and of the metabolic sensors, AMP-activated protein kinase (AMPK), and acetyl-CoA carboxylase and sirtuin (SIRT) 1. Furthermore, it significantly increased glucose uptake by enhancing glucose consumption and subsequently decreased FFA contents and increased carnitine palmitoyltransferase (CPT) 1b expression. Our study indicates that ARA has a potential for stimulating mitochondrial function and energy metabolism in muscle

    Enzyme-Aided Extraction of Fucoidan by AMG Augments the Functionality of EPCs through Regulation of the AKT/Rheb Signaling Pathway

    No full text
    The purpose of the present study is to improve the endothelial progenitor cells (EPC) activation, proliferation, and angiogenesis using enzyme-aided extraction of fucoidan by amyloglucosidase (EAEF-AMG). Enzyme-aided extraction of fucoidan by AMG (EAEF-AMG) significantly increased EPC proliferation by reducing the reactive oxygen species (ROS) and decreasing apoptosis. Notably, EAEF-AMG treated EPCs repressed the colocalization of TSC2/LAMP1 and promoted perinuclear localization of mTOR/LAMP1 and mTOR/Rheb. Moreover, EAEF-AMG enhanced EPC functionalities, including tube formation, cell migration, and wound healing via regulation of AKT/Rheb signaling. Our data provided cell priming protocols to enhance therapeutic applications of EPCs using bioactive compounds for the treatment of CVD

    CHIR99021 Augmented the Function of Late Endothelial Progenitor Cells by Preventing Replicative Senescence

    No full text
    Endothelial progenitor cells (EPCs) are specialized cells in circulating blood, well known for their ability to form new vascular structures. Aging and various ailments such as diabetes, atherosclerosis and cardiovascular disease make EPCs vulnerable to decreasing in number, which affects their migration, proliferation and angiogenesis. Myocardial ischemia is also linked to a reduced number of EPCs and their endothelial functional role, which hinders proper blood circulation to the myocardium. The current study shows that an aminopyrimidine derivative compound (CHIR99021) induces the inhibition of GSK-3β in cultured late EPCs. GSK-3β inhibition subsequently inhibits mTOR by blocking the phosphorylation of TSC2 and lysosomal localization of mTOR. Furthermore, suppression of GSK-3β activity considerably increased lysosomal activation and autophagy. The activation of lysosomes and autophagy by GSK-3β inhibition not only prevented replicative senescence of the late EPCs but also directed their migration, proliferation and angiogenesis. To conclude, our results demonstrate that lysosome activation and autophagy play a crucial role in blocking the replicative senescence of EPCs and in increasing their endothelial function. Thus, the findings provide an insight towards the treatment of ischemia-associated cardiovascular diseases based on the role of late EPCs

    Inhibitory Effect of Etravirine, a Non-Nucleoside Reverse Transcriptase Inhibitor, via Anterior Gradient Protein 2 Homolog Degradation against Ovarian Cancer Metastasis

    No full text
    Anterior gradient protein 2 homolog (AGR2), an endoplasmic reticulum protein, is secreted in the tumor microenvironment. AGR2 is a member of the disulfide isomerase family, is highly expressed in multiple cancers, and promotes cancer metastasis. In this study, we found that etravirine, which is a non-nucleoside reverse transcriptase inhibitor, could induce AGR2 degradation via autophagy. Moreover, etravirine diminished proliferation, migration, and invasion in vitro. Moreover, in an orthotopic xenograft mouse model, the combination of etravirine and paclitaxel significantly suppressed cancer progression and metastasis. This drug may be a promising therapeutic agent for the treatment of ovarian cancer

    Therapeutic Cell Protective Role of Histochrome under Oxidative Stress in Human Cardiac Progenitor Cells

    No full text
    Cardiac progenitor cells (CPCs) are resident stem cells present in a small portion of ischemic hearts and function in repairing the damaged heart tissue. Intense oxidative stress impairs cell metabolism thereby decreasing cell viability. Protecting CPCs from undergoing cellular apoptosis during oxidative stress is crucial in optimizing CPC-based therapy. Histochrome (sodium salt of echinochrome A—a common sea urchin pigment) is an antioxidant drug that has been clinically used as a pharmacologic agent for ischemia/reperfusion injury in Russia. However, the mechanistic effect of histochrome on CPCs has never been reported. We investigated the protective effect of histochrome pretreatment on human CPCs (hCPCs) against hydrogen peroxide (H2O2)-induced oxidative stress. Annexin V/7-aminoactinomycin D (7-AAD) assay revealed that histochrome-treated CPCs showed significant protective effects against H2O2-induced cell death. The anti-apoptotic proteins B-cell lymphoma 2 (Bcl-2) and Bcl-xL were significantly upregulated, whereas the pro-apoptotic proteins BCL2-associated X (Bax), H2O2-induced cleaved caspase-3, and the DNA damage marker, phosphorylated histone (γH2A.X) foci, were significantly downregulated upon histochrome treatment of hCPCs in vitro. Further, prolonged incubation with histochrome alleviated the replicative cellular senescence of hCPCs. In conclusion, we report the protective effect of histochrome against oxidative stress and present the use of a potent and bio-safe cell priming agent as a potential therapeutic strategy in patient-derived hCPCs to treat heart disease
    corecore