3 research outputs found

    Nanostructured ZnO-Based Electrochemical Sensor with Anionic Surfactant for the Electroanalysis of Trimethoprim

    No full text
    In this research, detection of trimethoprim (TMP) was carried out using a nanostructured zinc oxide nanoparticle-modified carbon paste electrode (ZnO/CPE) with an anionic surfactant and sodium dodecyl sulphate (SDS) with the help of voltametric techniques. The electrochemical nature of TMP was studied in 0.2 M pH 3.0 phosphate-buffer solution (PBS). The developed electrode displayed the highest peak current compared to nascent CPE. Effects of variation in different parameters, such as pH, immersion time, scan rate, and concentration, were investigated. The electrode process of TMP was irreversible and diffusion controlled with two electrons transferred. The effective concentration range (8.0 × 10−7 M–1.0 × 10−5 M) of TMP was obtained by varying the concentration with a lower limit of detection obtained to be 2.58 × 10−8 M. In addition, this approach was effectively employed in the detection of TMP in pharmaceutical dosages and samples of urine with the excellent recovery data, suggesting the potency of the developed electrode in clinical and pharmaceutical sample analysis

    An Electrochemical Electrode to Detect Theophylline Based on Copper Oxide Nanoparticles Composited with Graphene Oxide

    No full text
    The electrochemical analysis of theophylline (THP) was investigated by fabricating a carbon paste electrode (CPE) modified with graphene oxide (GO) along with copper oxide (CuO) nanoparticles (CuO-GO/CPE). The impact of electro-kinetic parameters such as the heterogeneous rate constant, the scan rate, the accumulation time, the pH, the transfer coefficient, and the number of electrons and protons transferred into the electro-oxidation mechanism of THP has been studied utilizing electrochemical methods such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The differential pulse voltammetry technique was employed to investigate THP in pharmaceutical and biological samples, confirming the limit of detection (LOD) and quantification (LOQ) of the THP. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis were performed to characterize the CuO nanoparticles. The CuO-GO/CPE was more sensitive in THP detection because its electrocatalytic characteristics displayed an enhanced peak current in the 0.2 M supporting electrolyte of pH 6.0, proving the excellent sensing functioning of the modified electrode

    Phytosynthesized nanoparticle-directed catalytic reduction of synthetic dyes: beast to beauty

    No full text
    corecore