40 research outputs found

    Interference Channels with Destination Cooperation

    Full text link
    Interference is a fundamental feature of the wireless channel. To better understand the role of cooperation in interference management, the two-user Gaussian interference channel where the destination nodes can cooperate by virtue of being able to both transmit and receive is studied. The sum-capacity of this channel is characterized up to a constant number of bits. The coding scheme employed builds up on the superposition scheme of Han and Kobayashi (1981) for two-user interference channels without cooperation. New upperbounds to the sum-capacity are also derived.Comment: revised based on reviewers' comment

    Capacity of Fading Gaussian Channel with an Energy Harvesting Sensor Node

    Full text link
    Network life time maximization is becoming an important design goal in wireless sensor networks. Energy harvesting has recently become a preferred choice for achieving this goal as it provides near perpetual operation. We study such a sensor node with an energy harvesting source and compare various architectures by which the harvested energy is used. We find its Shannon capacity when it is transmitting its observations over a fading AWGN channel with perfect/no channel state information provided at the transmitter. We obtain an achievable rate when there are inefficiencies in energy storage and the capacity when energy is spent in activities other than transmission.Comment: 6 Pages, To be presented at IEEE GLOBECOM 201

    Interference Channels With Source Cooperation

    No full text

    The two user Gaussian compound interference channel

    No full text
    We introduce the two user finite state compound Gaussian interference channel and characterize its capacity region to within one bit. The main contributions involve both novel inner and outer bounds. The inner bound is multilevel superposition coding but the decoding of the levels is opportunistic, depending on the channel state. The genie aided outer bound is motivated by the typical error events of the achievable scheme.
    corecore