23 research outputs found
Engineering bacteriophage encapsulation processes to improve stability and controlled release using pH responsive formulations
Enteric pathogens form a large part of infectious diseases which contribute to a bulk of the healthcare costs. Enteric infections are usually contracted via the faecal-oral route or through contact with contaminated surfaces. Treatment by antibiotics is becoming increasingly ineffective due to the growing number of antibiotic resistant strains. Anti-microbial resistance poses a serious threat to the future of healthcare worldwide and necessitates the search for alternate forms of therapy. Bacteriophages (phages), are viruses which specifically infect and lyse bacteria. To introduce phages as a viable form of therapy, route of administration needs to be considered carefully. Model phages with broad host ranges are ideal for therapy however oral delivery to the lower gastro-intestinal (GI) poses several challenges. The acidic stomach environment can be detrimental to phages, rendering them inactive during passage. To overcome this challenge and improve the stability of phage during encapsulation and storage, this PhD research has been conducted. pH responsive polymers, Eudragit and alginate were used to develop composite microparticles which protected phage from acidic pH (pH 1-3). A novel method of acidifying oil was developed for crosslinking droplets in vitro to avoid the use of harsh solvent systems that can cause phage inactivation. Platform microfluidic technology was employed for phage encapsulation for the first time. Monodispersed droplets and particles were produced, offering fine-tuning of droplet diameter to tailor the release and pH protection of encapsulated phage. Process scale-up was attempted using membrane emulsification (ME) to produce larger volumes of encapsulated phage. In vitro and in-situ models investigated the efficacy of encapsulated phage-bacterial killing. Industrial scale method of spray drying, and electrospinning were also used to demonstrate the versatility of the formulation. Tableting dry powder phage, showed an effective method for producing solid dosage forms for therapy. Additionally, electrospun phage fibres also showed the potential use of pH responsive formulations in addressing wound infections. Improvement in encapsulated phage storage stability was observed with the addition of trehalose in the formulation. This research underpins the need for testing phage encapsulation for site-specific delivery and offers insight into the potential use of commercially available technologies
High precision microfluidic microencapsulation of bacteriophages for enteric delivery
A Salmonella specific bacteriophage Felix O1 (Myoviridae) was microencapsulated in a pH responsive polymer formulation. The formulation incorporated a pH responsive methacrylic acid copolymer Eudragit® S100 (10% (w/v)) with the addition of the biopolymer sodium alginate, the composition of which was varied in the range (0.5% (w/v)e2% (w/v)). The microencapsulation process employed commercially available microfluidic droplet generation devices. We have used readily available low cost microfluidic chips instead of bespoke in-house fabricated glass capillary devices which are accessible
only in specialist research facilities. We show that these co-flow microfluidic devices can easily be used to prepare phage encapsulated microparticles making them suitable for use by both the phage research community and industry in order to evaluate and optimise phage compatible formulations for microencapsulation.
A novelty of the work reported here is that the size of the generated monodispersed droplets could be precisely controlled in the range 50 mme200 mm by varying the flow rates of the
dispersed and continuous phases. Consequently, alginate concentration and microparticle size were shown to influence the phage release profile and the degree of acid protection afforded to phages upon exposure to simulated gastric fluid (SGF). Bigger microparticles (~100 mm) showed better acid protection compared with smaller beads (~50 mm) made from the same formulation. Increasing the alginate composition resulted in improved acid protection of phages for similar particle sizes. The high viscosity
formulations containing higher amounts of alginate (e.g. 2% (w/v)) negatively affected ease of droplet generation in the microfluidic device thereby posing a limitation in terms of process scale-up. Felix O1 encapsulated in the formulation containing 10% (w/v) ES100 and 1% (w/v) alginate showed excellent protection upon exposure of the gelled microparticles to SGF (pH 1 for 2 h) without the use of any antacids in the encapsulation matrix. Encapsulated phages previously exposed to SGF (pH 1 for 2 h) were
released at elevated pH in simulated intestinal fluid (SIF) and were shown to arrest bacterial growth in the log growth phase. We have therefore demonstrated the microencapsulation of phages using readily available microfluidic chips to produce solid dosage microcapsule forms with a rapid pH triggered release profile suitable for targeted delivery and controlled release in the gastrointestinal tract
Microencapsulation of Enteric Bacteriophages in a pH-Responsive Solid Oral Dosage Formulation Using a Scalable Membrane Emulsification Process
A scalable low-shear membrane emulsification process was used to produce microencapsulated Escherichia coli-phages in a solid oral dosage form. Uniform pH-responsive composite microparticles (mean size ~100 µm) composed of Eudragit® S100 and alginate were produced. The internal microstructure of the gelled microcapsules was studied using ion-milling and imaging, which showed that the microparticles had a solid internal core. The microencapsulation process significantly protected phages upon prolonged exposure to a simulated gastric acidic environment. Encapsulated phages that had been pre-exposed to simulated gastric acid were added to actively growing bacterial cells using in vitro cell cultures and were found to be effective in killing E. coli. Encapsulated phages were also shown to be effective in killing actively growing E. coli in the presence of human epithelial cells. Confocal microscopy images showed that the morphology of encapsulated phage-treated epithelial cells was considerably better than controls without phage treatment. The encapsulated phages were stable during refrigerated storage over a four-week period. The process of membrane emulsification is highly scalable and is a promising route to produce industrial quantities of pH-responsive oral solid dosage forms suitable for delivering high titres of viable phages to the gastrointestinal tract
Diversity, Dynamics and Therapeutic Application of Clostridioides difficile Bacteriophages
Clostridioides difficile causes antibiotic-induced diarrhoea and pseudomembranous colitis in humans and animals. Current conventional treatment relies solely on antibiotics, but C. difficile infection (CDI) cases remain persistently high with concomitant increased recurrence often due to the emergence of antibiotic-resistant strains. Antibiotics used in treatment also induce gut microbial imbalance; therefore, novel therapeutics with improved target specificity are being investigated. Bacteriophages (phages) kill bacteria with precision, hence are alternative therapeutics for the targeted eradication of the pathogen. Here, we review current progress in C. difficile phage research. We discuss tested strategies of isolating C. difficile phages directly, and via enrichment methods from various sample types and through antibiotic induction to mediate prophage release. We also summarise phenotypic phage data that reveal their morphological, genetic diversity, and various ways they impact their host physiology and pathogenicity during infection and lysogeny. Furthermore, we describe the therapeutic development of phages through efficacy testing in different in vitro, ex vivo and in vivo infection models. We also discuss genetic modification of phages to prevent horizontal gene transfer and improve lysis efficacy and formulation to enhance stability and delivery of the phages. The goal of this review is to provide a more in-depth understanding of C. difficile phages and theoretical and practical knowledge on pre-clinical, therapeutic evaluation of the safety and effectiveness of phage therapy for CDI
Formulation, stabilisation and encapsulation of bacteriophage for phage therapy
Against a backdrop of global antibiotic resistance and increasing awareness of the importance of the
human microbiota, there has been resurgent interest in the potential use of bacteriophages for
therapeutic purposes, known as phage therapy. A number of phage therapy phase I and II clinical
trials have concluded, and shown phages don’t present significant adverse safety concerns. These
clinical trials used simple phage suspensions without any formulation and phage stability was of
secondary concern. Phages have a limited stability in solution, and undergo a significant drop in
phage titre during processing and storage which is unacceptable if phages are to become regulated
pharmaceuticals, where stable dosage and well defined pharmacokinetics and pharmacodynamics
are de rigueur. Animal studies have shown that the efficacy of phage therapy outcomes depend on
the phage concentration (i.e. the dose) delivered at the site of infection, and their ability to target and
kill bacteria, arresting bacterial growth and clearing the infection. In addition, in vitro and animal
studies have shown the importance of using phage cocktails rather than single phage preparations to
achieve better therapy outcomes. The in vivo reduction of phage concentration due to interactions
with host antibodies or other clearance mechanisms may necessitate repeated dosing of phages, or
sustained release approaches. Modelling of phage-bacterium population dynamics reinforces these
points. Surprisingly little attention has been devoted to the effect of formulation on phage therapy
outcomes, given the need for phage cocktails, where each phage within a cocktail may require
significantly different formulation to retain a high enough infective dose.
This review firstly looks at the clinical needs and challenges (informed through a review of key animal
studies evaluating phage therapy) associated with treatment of acute and chronic infections and the
drivers for phage encapsulation. An important driver for formulation and encapsulation is shelf life and
storage of phage to ensure reproducible dosages. Other drivers include formulation of phage for
encapsulation in micro- and nanoparticles for effective delivery, encapsulation in stimuli responsive
systems for triggered controlled or sustained release at the targeted site of infection. Encapsulation of
phage (e.g. in liposomes) may also be used to increase the circulation time of phage for treating
systemic infections, for prophylactic treatment or to treat intracellular infections. We then proceed to
document approaches used in the published literature on the formulation and stabilisation of phage for
storage and encapsulation of bacteriophage in micro- and nanostructured materials using freeze
drying (lyophilization), spray drying, in emulsions e.g. ointments, polymeric microparticles,
nanoparticles and liposomes. As phage therapy moves forward towards Phase III clinical trials, the
review concludes by looking at promising new approaches for micro- and nanoencapsulation of
phages and how these may address gaps in the field
Microencapsulation of Clostridium difficile specific bacteriophages using microfluidic glass capillary devices for colon delivery using pH triggered release.
The prevalence of pathogenic bacteria acquiring multidrug antibiotic resistance is a global health threat to mankind. This has motivated a renewed interest in developing alternatives to conventional antibiotics including bacteriophages (viruses) as therapeutic agents. The bacterium Clostridium difficile causes colon infection and is particularly difficult to treat with existing antibiotics; phage therapy may offer a viable alternative. The punitive environment within the gastrointestinal tract can inactivate orally delivered phages. C. difficile specific bacteriophage, myovirus CDKM9 was encapsulated in a pH responsive polymer (Eudragit® S100 with and without alginate) using a flow focussing glass microcapillary device. Highly monodispersed core-shell microparticles containing phages trapped within the particle core were produced by in situ polymer curing using 4-aminobenzoic acid dissolved in the oil phase. The size of the generated microparticles could be precisely controlled in the range 80 μm to 160 μm through design of the microfluidic device geometry and by varying flow rates of the dispersed and continuous phase. In contrast to free 'naked' phages, those encapsulated within the microparticles could withstand a 3 h exposure to simulated gastric fluid at pH 2 and then underwent a subsequent pH triggered burst release at pH 7. The significance of our research is in demonstrating that C. difficile specific phage can be formulated and encapsulated in highly uniform pH responsive microparticles using a microfluidic system. The microparticles were shown to afford significant protection to the encapsulated phage upon prolonged exposure to an acid solution mimicking the human stomach environment. Phage encapsulation and subsequent release kinetics revealed that the microparticles prepared using Eudragit® S100 formulations possess pH responsive characteristics with phage release triggered in an intestinal pH range suitable for therapeutic purposes. The results reported here provide proof-of-concept data supporting the suitability of our approach for colon targeted delivery of phages for therapeutic purposes
Microencapsulation of Enteric Bacteriophages in a pH-Responsive Solid Oral Dosage Formulation Using a Scalable Membrane Emulsification Process
A scalable low-shear membrane emulsification process was used to produce microencapsulated Escherichia coli-phages in a solid oral dosage form. Uniform pH-responsive composite microparticles (mean size ~100 µm) composed of Eudragit® S100 and alginate were produced. The internal microstructure of the gelled microcapsules was studied using ion-milling and imaging, which showed that the microparticles had a solid internal core. The microencapsulation process significantly protected phages upon prolonged exposure to a simulated gastric acidic environment. Encapsulated phages that had been pre-exposed to simulated gastric acid were added to actively growing bacterial cells using in vitro cell cultures and were found to be effective in killing E. coli. Encapsulated phages were also shown to be effective in killing actively growing E. coli in the presence of human epithelial cells. Confocal microscopy images showed that the morphology of encapsulated phage-treated epithelial cells was considerably better than controls without phage treatment. The encapsulated phages were stable during refrigerated storage over a four-week period. The process of membrane emulsification is highly scalable and is a promising route to produce industrial quantities of pH-responsive oral solid dosage forms suitable for delivering high titres of viable phages to the gastrointestinal tract.peerReviewe
Production of W/O emulsions composed of 5% (w/v) Eudragit® S100 dispersed in Miglyol 840 with 2% (w/v) PGPR and 0.75% (w/v) 4-aminobenzoic acid.
<p>ai) Widening jetting at Q<sub>c</sub> 3 ml/hr and Q<sub>d</sub> 0.9 ml/hr. The jet length is approximately 9 times the orifice diameter and the drop diameter is 400 μm; aii) Narrowing jetting Q<sub>c</sub> 6 ml/hr and Q<sub>d</sub> 0.5 ml/hr. The jet length is approximately 11 times the orifice diameter and the drop diameter is 280μm; b (i-iv) Stages of droplet formation in the dripping regime; ci) The dripping regime during experiment F3 (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0186239#pone.0186239.t002" target="_blank">Table 2</a>); cii) The dripping regime during experiment F5 (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0186239#pone.0186239.t002" target="_blank">Table 2</a>); ciii) The plug-flow regime at the orifice diameter of 200 μm, Q<sub>c</sub> = 0.06 ml/hr and Q<sub>d</sub> = 0.3 ml/hr. The curing was achieved using 1% (w/v) p-toluenesulfonic acid. The average drop diameter is ~700 μm; di) Droplets produced in (ci), average droplet size is 135 μm; dii) Droplets produced in (cii), average droplet size is 80 μm.</p
Microencapsulation of Clostridium difficile specific bacteriophages using microfluidic glass capillary devices for colon delivery using pH triggered release.
The prevalence of pathogenic bacteria acquiring multidrug antibiotic resistance is a global health threat to mankind. This has motivated a renewed interest in developing alternatives to conventional antibiotics including bacteriophages (viruses) as therapeutic agents. The bacterium Clostridium difficile causes colon infection and is particularly difficult to treat with existing antibiotics; phage therapy may offer a viable alternative. The punitive environment within the gastrointestinal tract can inactivate orally delivered phages. C. difficile specific bacteriophage, myovirus CDKM9 was encapsulated in a pH responsive polymer (Eudragit® S100 with and without alginate) using a flow focussing glass microcapillary device. Highly monodispersed core-shell microparticles containing phages trapped within the particle core were produced by in situ polymer curing using 4-aminobenzoic acid dissolved in the oil phase. The size of the generated microparticles could be precisely controlled in the range 80 μm to 160 μm through design of the microfluidic device geometry and by varying flow rates of the dispersed and continuous phase. In contrast to free 'naked' phages, those encapsulated within the microparticles could withstand a 3 h exposure to simulated gastric fluid at pH 2 and then underwent a subsequent pH triggered burst release at pH 7. The significance of our research is in demonstrating that C. difficile specific phage can be formulated and encapsulated in highly uniform pH responsive microparticles using a microfluidic system. The microparticles were shown to afford significant protection to the encapsulated phage upon prolonged exposure to an acid solution mimicking the human stomach environment. Phage encapsulation and subsequent release kinetics revealed that the microparticles prepared using Eudragit® S100 formulations possess pH responsive characteristics with phage release triggered in an intestinal pH range suitable for therapeutic purposes. The results reported here provide proof-of-concept data supporting the suitability of our approach for colon targeted delivery of phages for therapeutic purposes