6,211 research outputs found

    A survey of the UK benefit system

    Get PDF
    This paper describes all the main benefits in the UK system, giving details of rates and allowances, as well as numbers and types of claimants and levels of expenditure

    The Kinematics of Kepler's Supernova Remnant as revealed by Chandra

    Full text link
    I determine the expansion of the supernova remnant of SN1604 (Kepler's supernova) based on archival Chandra ACIS-S observations made in 2000 and 2006. The measurements were done in several distinct energy bands, and were made for the remnant as a whole, and for six individual sectors. The average expansion parameter indicates that the remnant expands as rt0.5r \propto t^{0.5}, but there are significant differences in different parts of the remnant: the bright northwestern part expands as rt0.35r \propto t^{0.35}, whereas the rest of the remnant's expansion shows an expansion rt0.6r \propto t^{0.6}. The latter is consistent with an explosion in which the outer part of the ejecta has a negative power law slope for density (ρvn\rho \propto v^{-n}) of n=7n=7, or with an exponential density profile(ρexp(v/ve)\rho \propto \exp(-v/v_e)). The expansion parameter in the southern region, in conjunction with the shock radius, indicate a rather low value (<5E50 erg) for the explosion energy of SN1604 for a distance of 4 kpc. An higher explosion energy is consistent with the results, if the distance is larger. The filament in the eastern part of the remnant, which is dominated by X-ray synchrotron radiation seems to mark a region with a fast shock speed rt0.7r \propto t^{0.7}, corresponding to a shock velocity of v= 4200 km/s, for a distance to SN1604 of 4 kpc. This is consistent with the idea that X-ray synchrotron emission requires shock velocities in excess of ~2000 km/s. The X-ray based expansion measurements reported are consistent with results based on optical and radio measurements, but disagree with previous X-ray measurements based on ROSAT and Einstein observations.Comment: Accepted for publication in ApJ. This new version is the accepted version, which differs mainly in the discussion sectio

    Evolution of Magnetic Fields in Supernova Remnants

    Full text link
    Supernova remnants (SNR) are now widely believed to be a source of cosmic rays (CRs) up to an energy of 1 PeV. The magnetic fields required to accelerate CRs to sufficiently high energies need to be much higher than can result from compression of the circumstellar medium (CSM) by a factor 4, as is the case in strong shocks. Non-thermal synchrotron maps of these regions indicate that indeed the magnetic field is much stronger, and for young SNRs has a dominant radial component while for old SNRs it is mainly toroidal. How these magnetic fields get enhanced, or why the field orientation is mainly radial for young remnants, is not yet fully understood. We use an adaptive mesh refinement MHD code, AMRVAC, to simulate the evolution of supernova remnants and to see if we can reproduce a mainly radial magnetic field in early stages of evolution. We follow the evolution of the SNR with three different configurations of the initial magnetic field in the CSM: an initially mainly toroidal field, a turbulent magnetic field, and a field parallel to the symmetry axis. Although for the latter two topologies a significant radial field component arises at the contact discontinuity due to the Rayleigh-Taylor instability, no radial component can be seen out to the forward shock. Ideal MHD appears not sufficient to explain observations. Possibly a higher compression ratio and additional turbulence due to dominant presence of CRs can help us to better reproduce the observations in future studies.Comment: 5 pages, 3 figures. To appear in conference proceedings of "Magnetic Fields in the Universe II" (2008), RevMexA

    Multiwavelength Signatures of Cosmic Ray Acceleration by Young Supernova Remnants

    Full text link
    An overview is given of multiwavelength observations of young supernova remnants, with a focus on the observational signatures of efficient cosmic ray acceleration. Some of the effects that may be attributed to efficient cosmic ray acceleration are the radial magnetic fields in young supernova remnants, magnetic field amplification as determined with X-ray imaging spectroscopy, evidence for large post-shock compression factors, and low plasma temperatures, as measured with high resolution optical/UV/X-ray spectroscopy. Special emphasis is given to spectroscopy of post-shock plasma's, which offers an opportunity to directly measure the post-shock temperature. In the presence of efficient cosmic ray acceleration the post-shock temperatures are expected to be lower than according to standard equations for a strong shock. For a number of supernova remnants this seems indeed to be the case.Comment: Invited review, to appear in the proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008

    Effects of Neutral Hydrogen on Cosmic Ray Precursors in Supernova Remnant Shock Waves

    Full text link
    Many fast supernova remnant shocks show spectra dominated by Balmer lines. The Hα\alpha profiles have a narrow component explained by direct excitations and a thermally Doppler broadened component due to atoms that undergo charge exchange in the post-shock region. However, the standard model does not take into account the cosmic-ray shock precursor, which compresses and accelerates plasma ahead of the shock. In strong precursors with sufficiently high densities, the processes of charge exchange, excitation and ionization will affect the widths of both narrow and broad line components. Moreover, the difference in velocity between the neutrals and the precursor plasma gives rise to frictional heating due to charge exchange and ionization in the precursor. In extreme cases, all neutrals can be ionized by the precursor. In this paper we compute the ion and electron heating for a wide range of shock parameters, along with the velocity distribution of the neutrals that reach the shock. Our calculations predict very large narrow component widths for some shocks with efficient acceleration, along with changes in the broad- to-narrow intensity ratio used as a diagnostic for the electron-ion temperature ratio. Balmer lines may therefore provide a unique diagnostic of precursor properties. We show that heating by neutrals in the precursor can account for the observed Hα\alpha narrow component widths, and that the acceleration efficiency is modest in most Balmer line shocks observed thus far.Comment: 9 pages, 3 figure

    Simulation and theory of fluid demixing and interfacial tension of mixtures of colloids and non-ideal polymers

    Full text link
    An extension of the Asakura-Oosawa-Vrij model of hard sphere colloids and non-adsorbing polymers, that takes polymer non-ideality into account through a repulsive stepfunction pair potential between polymers, is studied with grand canonical Monte Carlo simulations and density functional theory. Simulation results validate previous theoretical findings for the shift of the bulk fluid demixing binodal upon increasing strength of polymer-polymer repulsion, promoting the tendency to mix. For increasing strength of the polymer-polymer repulsion, simulation and theory consistently predict the interfacial tension of the free colloidal liquid-gas interface to decrease significantly for fixed colloid density difference in the coexisting phases, and to increase for fixed polymer reservoir packing fraction.Comment: 10 pages, 4 figure

    Small-Scale X-ray Variability in the Cassiopeia A Supernova Remnant

    Get PDF
    A comparison of X-ray observations of the Cassiopeia A supernova remnant taken in 2000, 2002, and 2004 with the Chandra ACIS-S3 reveals the presence of several small scale features (<= 10 arcsec) which exhibit significant intensity changes over a 4 year time frame. Here we report on the variability of six features, four of which show count rate increases from ~ 10% to over 90%, and two which show decreases of ~ 30% -- 40%. While extracted 1-4.5 keV X-ray spectra do not reveal gross changes in emission line strengths, spectral fits using non-equilibrium ionization, metal-rich plasma models indicate increased or decreased electron temperatures for features showing increasing or decreasing count rates, respectively. Based on the observed count rate changes and the assumption that the freely expanding ejecta has a velocity of ~ 5000 km/s at the reverse shock front, we estimate the unshocked ejecta to have spatial scale variations of 0.02 - 0.03 pc, which is consistent with the X-ray emitting ejecta belonging to a more diffuse component of the supernova ejecta than that seen in the optically emitting ejecta, which have spatial scales ~ 0.001 pc.Comment: 9 pages, 8 figures, to be published in Astronomical Journa

    The relation between post-shock temperature, cosmic-ray pressure and cosmic-ray escape for non-relativistic shocks

    Full text link
    Supernova remnants are thought to be the dominant source of Galactic cosmic rays. This requires that at least 5% of the available energy is transferred to cosmic rays, implying a high cosmic-ray pressure downstream of supernova remnant shocks. Recently, it has been shown that the downstream temperature in some remnants is low compared to the measured shock velocities, implying that additional pressure support by accelerated particles is present. Here we use a two-fluid thermodynamic approach to derive the relation between post-shock fractional cosmic-ray pressure and post-shock temperature, assuming no additional heating beyond adiabatic heating in the shock precursor and with all non-adiabatic heating occurring at the subshock. The derived relations show that a high fractional cosmic-ray pressure is only possible, if a substantial fraction of the incoming energy flux escapes from the system. Recently a shock velocity and a downstream proton temperature were measured for a shock in the supernova remnant RCW 86. We apply the two-fluid solutions to these measurements and find that the the downstream fractional cosmic-ray pressure is at least 50% with a cosmic-ray energy flux escape of at least 20%. In general, in order to have 5% of the supernova energy go into accelerating cosmic rays, on average the post-shock cosmic-ray pressure needs to be 30% for an effective cosmic-ray adiabatic index of 4/3.Comment: 9 pages, 6 color figures. This is updated with a corrected figure 5a and 5b, reflecting an ApJ erratu

    Characterizing the non-thermal emission of Cas A

    Full text link
    We report on our analysis of the 1 Ms Chandra observation of the supernova remnant Cas A in order to localize, characterize and quantify its non-thermal X-ray emission. More specifically, we investigated whether the X-ray synchrotron emission from the inside of the remnant is from the outward shock, but projected toward the inner ring, or from the inner shell. We tackle this problem by employing a Lucy-Richardson deconvolution technique and measuring spectral indices in the 4.2-6 keV band. We show that most of the continuum emission is coming from an inner ring that coincides with the location of the reverse shock. This inner ring includes filaments, whose X-ray emission has been found to be dominated by X-ray synchrotron emission. The X-ray emission from these filaments, both at the forward shock and from the inner ring, have relatively hard spectra with spectral index > -3.1. The regions emitting hard X-ray continuum contribute about 54% of the total X-ray emission in the 4.2-6 keV. This is lower than suggested by extrapolating the hard X-ray spectrum as measured by BeppoSAX-PDS and INTEGRAL. This can be reconciled by assuming a gradual steepening of the spectrum toward higher energies. We argue that the X-ray synchrotron emission is mainly coming from the Western part of the reverse shock. The reverse shock in the West is almost at rest in our observation frame, corresponding to a relatively high reverse shock velocity of ~6000 km/s in the frame of the freely expanding ejecta.Comment: Accepted for publication in ApJ, high resolution figures will appear in the official pape
    corecore