310 research outputs found
Sea ice studies in the Spitsbergen-Greenland area
The author has identified the following significant results. Detailed information on the outflow through the Fram Strait of ice from the Polar Ocean over shorter periods was obtained. It is found that the speed of the outflow may vary about 100% over periods of a few days. The core of the East Greenland Current is found between 2 deg E and 4 deg W. The speed of the surface water at 81 deg N is for a calm period estimated to be about 10 cm/s. A new surging glacier was discovered and new fronts of several glaciers were determined. The variation of the snow line with respect to distance from the coast was for the first time determined for the southern part of Spitsbergen. Great variations were observed, from 200 m in east to 550 m in the central area of the island
Sea ice studies in the Spitsbergen, Greenland area
There are no author-identified significant results in this report
Human operator dynamics for aural compensatory tracking
The human operator's ability to control using aural information only and using combined aural and visual displays was investigated for a simple tracking task. Tracking error was presented to the test subjects using one- and two-ear displays. For both displays the pitch of the tone represented the magnitude of the tracking error. The operator's aural control characteristics were modeled as a describing function plus a remnant. The effects on the measured describing function and remnant of different system dynamics, changes in the frequency content of the input and different displays were determined during the study. The describing function and remnant data indicate that humans can control as well with aural cues as with visual cues for the task considered. However, the reduction in operator time delays, expected because of the generally faster human response to aural stimuli, was not evident in the results. It was also determined that the operators could control equally well with either the one- or two-ear display
Reverse Spikeology Predicting Single Spikes
AbstractNeural models that simulate single spike trains can help us understand the basic principles of neural coding in vision. Keat et al. (2001) develop a hybrid model that combines spatiotemporal filtering with nonlinear spike generation. The model does a good job of predicting the responses of single retinal ganglion cells and thalamic relay neurons
Failure to detect infection by oral polio vaccine virus following natural exposure among inactivated polio vaccine recipients
While oral polio vaccine (OPV) has been shown to be safe and effective, it has been observed that it can circulate within a susceptible population and revert to a virulent form. Inactivated polio vaccine (IPV) confers protection from paralytic disease, but provides limited protection against infection. It is possible, then, that an IPV-immunized population, when exposed to OPV, could sustain undetected circulation of vaccine-derived poliovirus. This study examines the possibility of polio vaccine virus circulating within the United States (highly IPV-immunized) population that borders Mexico (OPV-immunized). A total of 653 stool and 20 sewage samples collected on the US side of the border were tested for the presence of poliovirus. All samples were found to be negative. These results suggest that the risk of circulating vaccine-derived poliovirus is low in fully immunized IPV-using populations in developed countries that border OPV-using populations
Weddell Sea iceberg drift: Five years of observations
Since 1999, 52 icebergs have been tagged with GPS buoys in the Weddell Seato enable monitoring of their position. The chosen icebergs were of small tomedium size, with a few icebergs larger than 10 km associatedwith the calving of icebergs A38 and A43 from the Ronne Ice Shelf.The majority of icebergs were tagged off Neumayer Station (8E, 70S).It was found that smaller bergs with edges shorter than 200 m had the shortestlife cycle (< 0.5 yr). Iceberg and thus freshwater export out of theWeddell Sea was found to be highly variable. In one year the majority of buoysdeployed remained in the Weddell Sea, constituting about 40 % of the NCEP P-Efreshwater input, whereas in other years all of the tagged icebergs were exported.The observed drifts of icebergs and sea-ice showed a remarkably coherent motion.The analysis of an iceberg - sea-ice buoy array in the western Weddell Seaand an iceberg array in the eastern Weddell Sea showed a coherent sea-iceiceberg drift in sea-ice concentrations above 86 %. Dynamic kinematic parameter(DKP) during the course of coherent movement were low and deviations from the meancourse associated with the passage of low-pressure system. The length scale ofcoherent movement was estimated to be less than 250km; about half the value found forthe Arctic Ocean
RNA Populations in Immunocompromised Patients as Reservoirs for Novel Norovirus Variants
Noroviruses are the leading cause of acute gastroenteritis outbreaks worldwide. The majority of norovirus outbreaks are caused by genogroup II.4 (GII.4). Novel GII.4 strains emerge every 2 to 4 years and replace older variants as the dominant norovirus. Novel variants emerge through a combination of recombination, genetic drift, and selection driven by population immunity, but the exact mechanism of how or where is not known. We detected two previously unknown novel GII.4 variants, termed GII.4 UNK1 and GII.4 UNK2, and a diverse norovirus population in fecal specimens from immunocompromised individuals with diarrhea after they had undergone bone marrow transplantation. We hypothesized that immunocompromised individuals can serve as reservoirs for novel norovirus variants. To test our hypothesis, metagenomic analysis of viral RNA populations was combined with a full-genome bioinformatic analysis of publicly available GII.4 norovirus sequences from 1974 to 2014 to identify converging sites. Variable sites were proportionally more likely to be within two amino acids (P < 0.05) of positively selected sites. Further analysis using a hypergeometric distribution indicated that polymorphic site distribution was random and its proximity to positively selected sites was dependent on the size of the norovirus genome and the number of positively selected sites.In conclusion, random mutations may have a positive impact on driving norovirus evolution, and immunocompromised individuals could serve as potential reservoirs for novel GII.4 strains
Herd Immunity to GII.4 Noroviruses Is Supported by Outbreak Patient Sera
Noroviruses (NoVs) of genogroup II, cluster 4 (GII.4), are the most common cause of outbreaks of acute gastroenteritis worldwide. During the past 13 years, GII.4 NoVs caused four seasons of widespread activity globally, each associated with the emergence of a new strain. In this report, we characterized the most recent epidemic strain, GII.4-2006 Minerva, by comparing virus-like particle (VLP) antigenic relationships and histo-blood group antigen (HBGA) binding profiles with strains isolated earlier. We also investigated the seroprevalence and specificity of GII.4 antibody in the years prior to, during, and following the GII.4 pandemic of 1995 and 1996 using a large collection of acute- and convalescent-phase serum pairs (n = 298) collected from 34 outbreaks. In a surrogate neutralization assay, we measured the blockade of HBGA binding using a panel of GII.4 VLPs representing strains isolated in 1987, 1997, 2002, and 2006 and a GII.3 VLP representing a strain isolated in the mid-1990s. Serum titers required for 50% HBGA blockade were compared between populations. In general, blockade of GII.4 VLP-HBGA binding was greater with convalescent-phase outbreak sera collected near the time of origin of the VLP strain. Heterotypic genotypes did not contribute to herd immunity against GII.4 NoVs based on their inability to block GII.4 VLP binding to HBGA. However, previous exposure to GII.4 NoV followed by infection by GII.3 NoV appeared to evoke an immune response to GII.4 NoV. These results support the hypothesis that herd immunity is a driving force for GII.4 evolution in the U.S. population. The data also suggest that complex patterns of cross-protection may exist across NoV genotypes in humans
Emergence of a Norovirus GII.4 Strain Correlates with Changes in Evolving Blockade Epitopes
The major capsid protein of norovirus GII.4 strains is evolving rapidly, resulting in epidemic strains with altered antigenicity. GII.4.2006 Minerva strains circulated at pandemic levels in 2006 and persisted at lower levels until 2009. In 2009, a new GII.4 variant, GII.4.2009 New Orleans, emerged and since then has become the predominant strain circulating in human populations. To determine whether changes in evolving blockade epitopes correlate with the emergence of the GII.4.2009 New Orleans strains, we compared the antibody reactivity of a panel of mouse monoclonal antibodies (MAbs) against GII.4.2006 and GII.4.2009 virus-like particles (VLPs). Both anti-GII.4.2006 and GII.4.2009 MAbs effectively differentiated the two strains by VLP-carbohydrate ligand blockade assay. Most of the GII.4.2006 MAbs preferentially blocked GII.4.2006, while all of the GII.4.2009 MAbs preferentially blocked GII.4.2009, although 8 of 12 tested blockade MAbs blocked both VLPs. Using mutant VLPs designed to alter predicted antigenic epitopes, binding of seven of the blockade MAbs was impacted by alterations in epitope A, identifying residues 294, 296, 297, 298, 368, and 372 as important antigenic sites in these strains. Convalescent-phase serum collected from a GII.4.2009 outbreak confirmed the immunodominance of epitope A, since alterations of epitope A affected serum reactivity by 40%. These data indicate that the GII.4.2009 New Orleans variant has evolved a key blockade epitope, possibly allowing for at least partial escape from protective herd immunity and provide epidemiological support for the utility of monitoring changes in epitope A in emergent strain surveillance
- …