237 research outputs found

    Histo-Blood Group Antigen Assay for Detecting Noroviruses in Water

    Get PDF
    We evaluated a novel, magnetic-bead-based histo-blood group antigen assay for the recovery of low numbers of norovirus particles. Using this assay, with Norwalk virus seeded in environmental waters as a model, we were able to recover 30 to 300 genomic copies of the virus

    Herd Immunity to GII.4 Noroviruses Is Supported by Outbreak Patient Sera

    Get PDF
    Noroviruses (NoVs) of genogroup II, cluster 4 (GII.4), are the most common cause of outbreaks of acute gastroenteritis worldwide. During the past 13 years, GII.4 NoVs caused four seasons of widespread activity globally, each associated with the emergence of a new strain. In this report, we characterized the most recent epidemic strain, GII.4-2006 Minerva, by comparing virus-like particle (VLP) antigenic relationships and histo-blood group antigen (HBGA) binding profiles with strains isolated earlier. We also investigated the seroprevalence and specificity of GII.4 antibody in the years prior to, during, and following the GII.4 pandemic of 1995 and 1996 using a large collection of acute- and convalescent-phase serum pairs (n = 298) collected from 34 outbreaks. In a surrogate neutralization assay, we measured the blockade of HBGA binding using a panel of GII.4 VLPs representing strains isolated in 1987, 1997, 2002, and 2006 and a GII.3 VLP representing a strain isolated in the mid-1990s. Serum titers required for 50% HBGA blockade were compared between populations. In general, blockade of GII.4 VLP-HBGA binding was greater with convalescent-phase outbreak sera collected near the time of origin of the VLP strain. Heterotypic genotypes did not contribute to herd immunity against GII.4 NoVs based on their inability to block GII.4 VLP binding to HBGA. However, previous exposure to GII.4 NoV followed by infection by GII.3 NoV appeared to evoke an immune response to GII.4 NoV. These results support the hypothesis that herd immunity is a driving force for GII.4 evolution in the U.S. population. The data also suggest that complex patterns of cross-protection may exist across NoV genotypes in humans

    RNA Populations in Immunocompromised Patients as Reservoirs for Novel Norovirus Variants

    Get PDF
    Noroviruses are the leading cause of acute gastroenteritis outbreaks worldwide. The majority of norovirus outbreaks are caused by genogroup II.4 (GII.4). Novel GII.4 strains emerge every 2 to 4 years and replace older variants as the dominant norovirus. Novel variants emerge through a combination of recombination, genetic drift, and selection driven by population immunity, but the exact mechanism of how or where is not known. We detected two previously unknown novel GII.4 variants, termed GII.4 UNK1 and GII.4 UNK2, and a diverse norovirus population in fecal specimens from immunocompromised individuals with diarrhea after they had undergone bone marrow transplantation. We hypothesized that immunocompromised individuals can serve as reservoirs for novel norovirus variants. To test our hypothesis, metagenomic analysis of viral RNA populations was combined with a full-genome bioinformatic analysis of publicly available GII.4 norovirus sequences from 1974 to 2014 to identify converging sites. Variable sites were proportionally more likely to be within two amino acids (P < 0.05) of positively selected sites. Further analysis using a hypergeometric distribution indicated that polymorphic site distribution was random and its proximity to positively selected sites was dependent on the size of the norovirus genome and the number of positively selected sites.In conclusion, random mutations may have a positive impact on driving norovirus evolution, and immunocompromised individuals could serve as potential reservoirs for novel GII.4 strains

    Emergence of a Norovirus GII.4 Strain Correlates with Changes in Evolving Blockade Epitopes

    Get PDF
    The major capsid protein of norovirus GII.4 strains is evolving rapidly, resulting in epidemic strains with altered antigenicity. GII.4.2006 Minerva strains circulated at pandemic levels in 2006 and persisted at lower levels until 2009. In 2009, a new GII.4 variant, GII.4.2009 New Orleans, emerged and since then has become the predominant strain circulating in human populations. To determine whether changes in evolving blockade epitopes correlate with the emergence of the GII.4.2009 New Orleans strains, we compared the antibody reactivity of a panel of mouse monoclonal antibodies (MAbs) against GII.4.2006 and GII.4.2009 virus-like particles (VLPs). Both anti-GII.4.2006 and GII.4.2009 MAbs effectively differentiated the two strains by VLP-carbohydrate ligand blockade assay. Most of the GII.4.2006 MAbs preferentially blocked GII.4.2006, while all of the GII.4.2009 MAbs preferentially blocked GII.4.2009, although 8 of 12 tested blockade MAbs blocked both VLPs. Using mutant VLPs designed to alter predicted antigenic epitopes, binding of seven of the blockade MAbs was impacted by alterations in epitope A, identifying residues 294, 296, 297, 298, 368, and 372 as important antigenic sites in these strains. Convalescent-phase serum collected from a GII.4.2009 outbreak confirmed the immunodominance of epitope A, since alterations of epitope A affected serum reactivity by 40%. These data indicate that the GII.4.2009 New Orleans variant has evolved a key blockade epitope, possibly allowing for at least partial escape from protective herd immunity and provide epidemiological support for the utility of monitoring changes in epitope A in emergent strain surveillance

    Epidemiological and virological investigation of a Norovirus outbreak in a resort in Puglia, Italy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper describes the third large outbreak of Norovirus (NoV) gastroenteritis reported in the Southern Italy region of Puglia.</p> <p>Methods</p> <p>A matched case control study was conducted, on 19 July 2005, for investigating risk factors, using a structured questionnaire on food consumption. A multivariate analysis was conducted to estimate the adjusted Odds Ratios. Laboratory and environmental investigation were also performed.</p> <p>Results</p> <p>On the day of the study 41 cases were identified and 41 controls were enrolled. Controls were matched for age and gender. The mean age of the cases was 26 years old, and 58% were female. The clinical pattern of the disease was characterised by the presence of diarrhoea (95%), vomiting (70%), abdominal pain (51%) and fever (32%). Of the 41 cases included in the study, the majority (65%) were residents of Northern Italian regions. No food samples were available for testing. The matched univariate analysis revealed that cases were more likely to have consumed raw mussels, eggs or ice cubes made of tap water than controls. In the multivariate conditional logistic regression analysis, having eaten raw mussels or ice became more strongly associated with illness.</p> <p>All of the 20 faecal samples collected were tested for NoVs. Eighteen stools (90% of total examined) were positive by RT-PCR, and sequence analysis performed onto 3 samples confirmed the presence of a GGII NoV. No test specific for NoV was performed on water or food samples.</p> <p>Conclusion</p> <p>The most likely hypothesis supported by the findings of the epidemiological investigation was that illness was associated with raw mussels and ice, made with tap water. These hypothesis could not be confirmed by specific microbiologic testing for NoV in food or ice. The lack of clear knowledge of NoV as a major causative agent of epidemic outbreaks of gastroenteritis in Italy is due to the absence of timely reporting of the cases to the local public health offices and the uncommon practice of saving clinical samples for virological analysis after bacteriological testing.</p

    The QMAP and MAT/TOCO Experiments for Measuring Anisotropy in the Cosmic Microwave Background

    Get PDF
    We describe two related experiments that measured the anisotropy in the cosmic microwave background (CMB). QMAP was a balloon-borne telescope that flew twice in 1996, collecting data on degree angular scales with an array of six high electron mobility transistor-based amplifiers (HEMTs). QMAP was the first experiment to use an interlocking scan strategy to directly produce high signal-to-noise CMB maps. The QMAP gondola was then refit for ground based work as the MAT/TOCO experiment. Observations were made from 5200 m on Cerro Toco in Northern Chile in 1997 and 1998 using time-domain beam synthesis. MAT/TOCO was the first experiment to see both the rise and fall of the CMB angular spectrum, thereby localizing the position of the first peak to l_{peak}=216 +/- 14. In addition to describing the instruments, we discuss the data selection methods, checks for systematic errors, and we compare the MAT/TOCO results to those from recent experiments. We also correct the data to account for an updated calibration and a small contribution from foreground emission. We find the amplitude of the first peak for l between 160 and 240 to be T_{peak}=80.9 +/- 3.4 +/- 5.1 uK, where the first error is statistical and the second is from calibration.Comment: 31 pages, 11 figures, Submitted to Ap

    PATRIC: The VBI PathoSystems Resource Integration Center

    Get PDF
    The PathoSystems Resource Integration Center (PATRIC) is one of eight Bioinformatics Resource Centers (BRCs) funded by the National Institute of Allergy and Infection Diseases (NIAID) to create a data and analysis resource for selected NIAID priority pathogens, specifically proteobacteria of the genera Brucella, Rickettsia and Coxiella, and corona-, calici- and lyssaviruses and viruses associated with hepatitis A and E. The goal of the project is to provide a comprehensive bioinformatics resource for these pathogens, including consistently annotated genome, proteome and metabolic pathway data to facilitate research into counter-measures, including drugs, vaccines and diagnostics. The project's curation strategy has three prongs: ‘breadth first’ beginning with whole-genome and proteome curation using standardized protocols, a ‘targeted’ approach addressing the specific needs of researchers and an integrative strategy to leverage high-throughput experimental data (e.g. microarrays, proteomics) and literature. The PATRIC infrastructure consists of a relational database, analytical pipelines and a website which supports browsing, querying, data visualization and the ability to download raw and curated data in standard formats. At present, the site warehouses complete sequences for 17 bacterial and 332 viral genomes. The PATRIC website () will continually grow with the addition of data, analysis and functionality over the course of the project

    Selection of a phylogenetically informative region of the norovirus genome for outbreak linkage

    Get PDF
    The recognition of a common source norovirus outbreak is supported by finding identical norovirus sequences in patients. Norovirus sequencing has been established in many (national) public health laboratories and academic centers, but often partial and different genome sequences are used. Therefore, agreement on a target sequence of sufficient diversity to resolve links between outbreaks is crucial. Although harmonization of laboratory methods is one of the keystone activities of networks that have the aim to identify common source norovirus outbreaks, this has proven difficult to accomplish, particularly in the international context. Here, we aimed at providing a method enabling identification of the genomic region informative of a common source norovirus outbreak by bio-informatic tools. The data set of 502 unique full length capsid gene sequences available from the public domain, combined with epidemiological data including linkage information was used to build over 3,000 maximum likelihood (ML) trees for different sequence lengths and regions. All ML trees were evaluated for robustness and specificity of clustering of known linked norovirus outbreaks against the background diversity of strains. Great differences were seen in the robustness of commonly used PCR targets for cluster detection. The capsid gene region spanning nucleotides 900–1,400 was identified as the region optimally substituting for the full length capsid region. Reliability of this approach depends on the quality of the background data set, and we recommend periodic reassessment of this growing data set. The approach may be applicable to multiple sequence-based data sets of other pathogens
    • …
    corecore