533 research outputs found
Development of radiation hardened lithium- doped solar cells Final report
Fabrication techniques to improve initial efficiency and radiation tolerance of radiation hardened lithium-diffused silicon solar cell
Lithium-diffused solar cells Quarterly report, 1 Jul. - 30 Sep. 1968
Lithium diffused silicon solar cell
Development and fabrication of lithium- diffused silicon solar cells Final report, 18 Aug. - 31 Jan. 1968
Lithium-diffused p-n silicon solar cells of high conversion efficiency and improve resistance to space radiation effect
The Effects of Listening Training on Achievement
Reading has long been recognized as a necessary skill but only recently has there been much interest in listening skills even though listening is the most frequently used language activity. Within the past decade many studies have indicated that listening ability correlates highly with intelligence, vocabulary, and report card grades, and some investigators claim that listening training will improve listening ability. If listening ability correlates positively with report card grades then listening training should aid academic achievement.
The present experiment has investigated the effect of listening training on the grade point averages of college freshmen. Since special treatment of experimental subjects can influence the subjects performance an additional control group, called the Hawthorne group, was added to this experiment. This Hawthorne group was given special attention by personal study assignments while the experimental group listened to tape recorded listening exercises. The control group was not told that they were part of the experiment.
An analysis of variance revealed that there was a significant difference among the groups and a further analysis was made and the variability was localized. A significant difference was found between the listening training and control groups but no significant difference was found between the Hawthorne group and either the control group or the listening training group. Based on these results it is indicated that the Hawthorne Effect and listening training are simply different levels of the same variable
Neurogenesis Deep Learning
Neural machine learning methods, such as deep neural networks (DNN), have
achieved remarkable success in a number of complex data processing tasks. These
methods have arguably had their strongest impact on tasks such as image and
audio processing - data processing domains in which humans have long held clear
advantages over conventional algorithms. In contrast to biological neural
systems, which are capable of learning continuously, deep artificial networks
have a limited ability for incorporating new information in an already trained
network. As a result, methods for continuous learning are potentially highly
impactful in enabling the application of deep networks to dynamic data sets.
Here, inspired by the process of adult neurogenesis in the hippocampus, we
explore the potential for adding new neurons to deep layers of artificial
neural networks in order to facilitate their acquisition of novel information
while preserving previously trained data representations. Our results on the
MNIST handwritten digit dataset and the NIST SD 19 dataset, which includes
lower and upper case letters and digits, demonstrate that neurogenesis is well
suited for addressing the stability-plasticity dilemma that has long challenged
adaptive machine learning algorithms.Comment: 8 pages, 8 figures, Accepted to 2017 International Joint Conference
on Neural Networks (IJCNN 2017
A new chelonioid turtle from the Paleocene of Cabinda, Angola
Sem PDF.We report a new chelonioid turtle on the basis of a nearly complete skull collected in lower Paleocene, shallow marine deposits, equivalent to the offshore Landana Formation, near the town of Landana in Cabinda Province, Angola. Chelonioid material previously reported from this locality is likely referable to this new taxon. The well-preserved skull is missing the left quadrate, squamosal, and prootic, both opisthotics, and the mandible. The skull possesses a rod-like basisphenoid rostrum, which is a synapomorphy of Chelonioidea, but it differs from other chelonioid skulls in that the contact between the parietal and squamosal is absent, and the posterior palatine foramen is present. Phylogenetic analysis recovers the new taxon as a basal chelonioid. The Paleocenetextendash Eocene strata near Landana have produced a wealth of turtle fossils, including the holotype of the pleurodire Taphrosphys congolensis. A turtle humerus collected from the Landana locality differs morphologically from the humeri of chelonioids and Taphrosphys, indicating the presence of a third taxon. Chelonioid fossil material in the Landana assemblage is rare compared to the abundant fragmentary remains of Taphrosphys that are found throughout the stratigraphic section. This disparity in abundance suggests the new chelonioid taxon preferred open marine habitats, whereas Taphrosphys frequented nearshore environments.publishe
A Digital Neuromorphic Architecture Efficiently Facilitating Complex Synaptic Response Functions Applied to Liquid State Machines
Information in neural networks is represented as weighted connections, or
synapses, between neurons. This poses a problem as the primary computational
bottleneck for neural networks is the vector-matrix multiply when inputs are
multiplied by the neural network weights. Conventional processing architectures
are not well suited for simulating neural networks, often requiring large
amounts of energy and time. Additionally, synapses in biological neural
networks are not binary connections, but exhibit a nonlinear response function
as neurotransmitters are emitted and diffuse between neurons. Inspired by
neuroscience principles, we present a digital neuromorphic architecture, the
Spiking Temporal Processing Unit (STPU), capable of modeling arbitrary complex
synaptic response functions without requiring additional hardware components.
We consider the paradigm of spiking neurons with temporally coded information
as opposed to non-spiking rate coded neurons used in most neural networks. In
this paradigm we examine liquid state machines applied to speech recognition
and show how a liquid state machine with temporal dynamics maps onto the
STPU-demonstrating the flexibility and efficiency of the STPU for instantiating
neural algorithms.Comment: 8 pages, 4 Figures, Preprint of 2017 IJCN
Deformation effects in Ni nuclei produced in Si+Si at 112 MeV
Velocity and energy spectra of the light charged particles (protons and
-particles) emitted in the Si(E = 112 MeV) + Si
reaction have been measured at the Strasbourg VIVITRON Tandem facility. The
ICARE charged particle multidetector array was used to obtain exclusive spectra
of the light particles in the angular range 15 - 150 degree and to determine
the angular correlations of these particles with respect to the emission angles
of the evaporation residues. The experimental data are analysed in the
framework of the statistical model. The exclusive energy spectra of
-particles emitted from the Si + Si compound system are
generally well reproduced by Monte Carlo calculations using spin-dependent
level densities. This spin dependence approach suggests the onset of large
deformations at high spin. A re-analysis of previous -particle data
from the Si + Si compound system, using the same spin-dependent
parametrization, is also presented in the framework of a general discussion of
the occurrence of large deformation effects in the A ~ 60 mass region.Comment: 25 pages, 6 figure
Landau damping in trapped Bose-condensed gases
We study Landau damping in dilute Bose-Einstein condensed gases in both
spherical and prolate ellipsoidal harmonic traps. We solve the Bogoliubov
equations for the mode spectrum in both of these cases, and calculate the
damping by summing over transitions between excited quasiparticle states. The
results for the spherical case are compared to those obtained in the
Hartree-Fock approximation, where the excitations take on a single-particle
character, and excellent agreement between the two approaches is found. We have
also taken the semiclassical limit of the Hartree-Fock approximation and obtain
a novel expression for the Landau damping rate involving the time dependent
self-diffusion function of the thermal cloud. As a final approach, we study the
decay of a condensate mode by making use of dynamical simulations in which both
the condensate and thermal cloud are evolved explicitly as a function of time.
A detailed comparison of all these methods over a wide range of sample sizes
and trap geometries is presented.Comment: 18 pages, 13 figures, submitted to the New Journal of Physics focus
issue on Quantum Gase
Role of deformation in the decay of Ni and Ca di-nuclei
Inclusive as well as exclusive energy spectra of the light charged particles
emitted in the reactions have
been measured at the Strasbourg VIVITRON facility in the angular range 15^0 -
150^0, using the ICARE multidetector array. The experimental energy spectra of
-particles are generally well reproduced by the statistical model with
a spin-dependent level density indicating the onset of defomations at high
spin.Comment: 4 pages, 2 ps Figures included -- Talk given at the International
Nuclear Physics Conference INPC98, Paris, France, August, 1998 (Proceedings
to be published in Nuclear Physics A, 1999) -
- …