24 research outputs found

    The effect of climate on lake mixing patterns and temperatures

    Get PDF
    The maritime geographical location has been said to give distinctive characteristics of water mixing to lakes (Hutchinson 1957, pp. 443-444), but such effects have never been described in detail. New Zealand's lakes should exemplify well these maritime distinctions, and in this chapter features of water column mixing and temperature changes are identified which can distinguish New Zealand lakes from those elsewhere

    OPINION Endless summer: internal loading processes dominate nutrient cycling in tropical lakes

    Full text link
    1. Fossil diatom assemblages deposited in more than a dozen African lakes roughly 9500 years BP were dominated by a single planktonic species, Stephanodiscus astraea (Ehrcnb.) Grun. (although realistically this is likely to be a species complex). These diatoms flourished when lake-levels were maximal. Data are included from many of (he large African lakes, and others extending from Lake AbhÉ0, Ethiopia, to Lake Cheshi, Zambia. 2. Because the ecological physiology of Stephanodiscus species is well known one can predict the nutrient regime that must have existed when Stephanodiscus bloomed. Owing to competition for resources Stephano-discus species dominate when the supply ratio of silicon to phosphorus (in moles) in the epilimnion is relatively low (Si:P∌1). Consequently, lakes dominated by S. astraea are often hypereutrophic. 3. We propose a series of hypotheses to explain why tropical lakes have decreasing Si:P ratios as lake-levels increase, primarily owing to internal P-loading processes in the epilimnia. These observations appear to contradict present conceptions of the fundamental relationships governing nutrient loadings to and within lakes. Tropical lakes appear to have had increasing epilimnetic phosphorus loading as lake-levels increased. In contrast, large, deep lakes in the temperate zone are usually oligotrophic, with high Si:P ratios. 4. Our major conclusion is that regeneration rates are greater than removal rates for phosphorus in tropical lakes as compared to temperate lakes, especially where epilimnelic mixing exceeds 50 m. Biological control of the elemental cycles dominate in tropical lakes, whereas nutrient cycles in temperate lakes are dominated by physical processes for a large part of the year. This results in major differences in the fundamental mechanisms of nutrient regeneration and their relationships to morphometric features of lakes in the two regions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71789/1/j.1365-2427.1990.tb00280.x.pd
    corecore