2 research outputs found
FLOWERING REPRESSOR AAA(+) ATPase 1 is a novel regulator of perennial flowering in Arabis alpina
Arabis alpina is a polycarpic perennial, in which PERPETUAL FLOWERING1 (PEP1) regulates flowering and perennial traits in a vernalization-dependent manner. Mutagenesis screens of the pep1 mutant established the role of other flowering time regulators in PEP1-parallel pathways. Here we characterized three allelic enhancers of pep1 (eop002, 085 and 091) which flower early. We mapped the causal mutations and complemented mutants with the identified gene. Using quantitative reverse transcriptase PCR and reporter lines, we determined the protein spatiotemporal expression patterns and localization within the cell. We also characterized its role in Arabidopsis thaliana using CRISPR and in A. alpina by introgressing mutant alleles into a wild-type background. These mutants carried lesions in an AAA(+) ATPase of unknown function, FLOWERING REPRESSOR AAA(+) ATPase 1 (AaFRAT1). AaFRAT1 was detected in the vasculature of young leaf primordia and the rib zone of flowering shoot apical meristems. At the subcellular level, AaFRAT1 was localized at the interphase between the endoplasmic reticulum and peroxisomes. Introgression lines carrying Aafrat1 alleles required less vernalization to flower and reduced number of vegetative axillary branches. By contrast, A. thaliana CRISPR lines showed weak flowering phenotypes. AaFRAT1 contributes to flowering time regulation and the perennial growth habit of A. alpina
Dynamic hydrolase labelling as a marker for seed quality in Arabidopsis seeds
Seed quality is affected by different constituents of the seed. In general, seed lots are considered to be of high quality when they exhibit fast and homogeneous germination. When seeds are stored, they undergo different degrees of damage that have detrimental effects on their quality. Therefore, accurate prediction of the seed quality and viability levels of a seed lot is of high importance in the seed-producing industry. Here, we describe the use of activity-based protein profiling of proteases to evaluate the quality of artificially and naturally aged seeds of Arabidopsis thaliana. Using this approach, we have identified two protease activities with opposite behaviours in aged seeds of Arabidopsis that correlate with the quality status of the seeds. We show that vacuolar processing enzymes (VPEs) become more active during the ageing process, in both artificial and natural ageing treatments. Secondly, we demonstrate that serine hydrolases are active at the beginning of our artificial ageing treatment, but their labelling decreases along with seed viability. We present a list of candidate hydrolases active during seed germination and propose that these protease activities can be used in combination with VPEs to develop novel markers of seed quality