18 research outputs found

    Quantum correlations between two distant cavity QED systems coupled by a mechanical resonator

    Full text link
    Achieving quantum correlations between two distant systems is a desirable feature for quantum networking. In this work, we study a system composed of two quantum emitter-cavity subsystems spatially separated. A mechanical resonator couples to either both quantum emitters or both cavities leading to quantum correlations between both subsystems such as non-local light-matter dressed states and cavity-cavity normal mode splitting. These indirect couplings can be explained by an effective Hamiltonian for large energy detuning between the mechanical resonator and the atoms/cavities. Moreover, it is found optimal conditions for the physical parameters of the system in order to maximize the entanglement of such phonon-mediated couplings

    Polariton Lasing in a Multilevel Quantum Dot Strongly Coupled To a Single Photon Mode

    Full text link
    We present an approximate analytic expression for the photoluminescence spectral function of a model polariton system, which describes a quantum dot, with a finite number of fermionic levels, strongly interacting with the lowest photon mode of a pillar microcavity. Energy eigenvalues and wavefunctions of the electron-hole-photon system are obtained by numerically diagonalizing the Hamiltonian. Pumping and photon losses through the cavity mirrors are described with a master equation, which is solved in order to determine the stationary density matrix. The photon first-order correlation function, from which the spectral function is found, is computed with the help of the Quantum Regression Theorem. The spectral function qualitatively describes the polariton lasing regime in the model, corresponding to pumping rates two orders of magnitude lower than those needed for ordinary (photon) lasing. The second-order coherence functions for the photon and the electron-hole subsystems are computed as functions of the pumping rate.Comment: version accepted in Phys. Rev.

    Density operator of a system pumped with polaritons: A Jaynes-Cummings like approach

    Full text link
    We investigate the effects of considering two different incoherent pumpings over a microcavity-quantum dot system modelled using the Jaynes-Cummings Hamiltonian. When the system is incoherently pumped with polaritons it is able to sustain a large number of photons inside the cavity with Poisson-like statistics in the stationary limit, and also leads to a separable exciton-photon state. We also investigate the effects of both types of pumpings (Excitonic and Polaritonic) in the emission spectrum of the cavity. We show that the polaritonic pumping as considered here is unable to modify the dynamical regimes of the system as the excitonics pumping does. Finally, we obtain a closed form expression for the negativity of the density matrices that the quantum master equation considered here generates.Comment: 16 pages, 4 figure
    corecore