28 research outputs found

    Estrogen Induces Selective Transcription of Caveolin1 Variants in Human Breast Cancer through Estrogen Responsive Element-Dependent Mechanisms

    Get PDF
    The estrogen receptor (ER) signaling regulates numerous physiological processes mainly through activation of gene transcription (genomic pathways). Caveolin1 (CAV1) is a membrane-resident protein that behaves as platform to enable different signaling molecules and receptors for membrane-initiated pathways. CAV1 directly interacts with ERs and allows their localization on membrane with consequent activation of ER-non-genomic pathways. Loss of CAV1 function is a common feature of different types of cancers, including breast cancer. Two protein isoforms, CAV1α and CAV1β, derived from two alternative translation initiation sites, are commonly described for this gene. However, the exact transcriptional regulation underlying CAV1 expression pattern is poorly elucidated. In this study, we dissect the molecular mechanism involved in selective expression of CAV1β isoform, induced by estrogens and downregulated in breast cancer. Luciferase assays and Chromatin immunoprecipitation demonstrate that transcriptional activation is triggered by estrogen-responsive elements embedded in CAV1 intragenic regions and DNA-binding of estrogen-ER complexes. This regulatory control is dynamically established by local chromatin changes, as proved by the occurrence of histone H3 methylation/demethylation events and association of modifier proteins as well as modification of H3 acetylation status. Thus, we demonstrate for the first time, an estrogen-ERs-dependent regulatory circuit sustaining selective CAV1β expression

    Group V Secreted Phospholipase A2 Induces the Release of Proangiogenic and Antiangiogenic Factors by Human Neutrophils

    Get PDF
    Secreted phospholipases A2 (sPLA2s) are extracellular enzymes that catalyze the release of free fatty acids and lysophospholipids from membrane phospholipids and also bind to different receptors (e.g., PLA2R1 or integrins). To date, 12 mammalian sPLA2s have been identified, which play a critical role in pathophysiological processes including inflammation and cancer. sPLA2s activate immune cells such as human neutrophils (PMNs) by enzymatic activity- or receptor-mediated mechanisms. In addition, human PMNs synthesize and store human group V (hGV) and human group X (hGX) sPLA2s in their granules, but only the former is released upon cellular activation. We investigated the effects of sPLA2s on the release of proangiogenic and antiangiogenic factors by PMNs. We found that exogenous hGV and hGX sPLA2s induce the release of vascular endothelial growth factor (VEGF)-A, angiopoietin 1 (Ang1), and CXCL8/IL-8. Only hGV induces the secretion of the antiangiogenic isoform of VEGF-A, namely, VEGF-A165b. While the release of VEGF-A, Ang1, and CXCL8/IL-8 was likely mediated by hGV enzymatic activity and/or binding to PLA2R1 and heparan sulfate proteoglycans, the release of VEGF-A165b requires the interaction with αVβ3 and α4β1 integrins. We also provide evidence that endogenous hGV released by N-formyl-met-leu-phe (fMLF)-activated PMNs is involved in the release of angiogenic factors. The translational relevance of these data is supported by our findings that hGV expression is increased in human samples of lung cancer which are infiltrated by PMNs. Overall, our results suggest that the hGV-neutrophil axis may play a relevant role in the modulation of cancer-related inflammation and angiogenesis

    The PI3K/AKT pathway is activated by HGF in NT2D1 non-seminoma cells and has a role in the modulation of their malignant behavior

    Get PDF
    Overactivation of the c-MET/HGF system is a feature of many cancers. We previously reported that type II testicular germ cell tumor (TGCT) cells express the c-MET receptor, forming non-seminomatous lesions that are more positive compared with seminomatous ones. Notably, we also demonstrated that NT2D1 non-seminomatous cells (derived from an embryonal carcinoma lesion) increase their proliferation, migration, and invasion in response to HGF. Herein, we report that HGF immunoreactivity is more evident in the microenvironment of embryonal carcinoma biopsies with respect to seminomatous ones, indicating a tumor-dependent modulation of the testicular niche. PI3K/AKT is one of the signaling pathways triggered by HGF through the c-MET activation cascade. Herein, we demonstrated that phospho-AKT increases in NT2D1 cells after HGF stimulation. Moreover, we found that this pathway is involved in HGF-dependent NT2D1 cell proliferation, migration, and invasion, since the co-administration of the PI3K inhibitor LY294002 together with HGF abrogates these responses. Notably, the inhibition of endogenous PI3K affects collective cell migration but does not influence proliferation or chemotactic activity. Surprisingly, LY294002 administered without the co-administration of HGF increases cell invasion at levels comparable to the HGF-administered samples. This paradoxical result highlights the role of the testicular microenvironment in the modulation of cellular responses and stimulates the study of the testicular secretome in cancer lesions

    HIV-1 Tat protein vaccination in mice infected with Mycobacterium tuberculosis is safe, immunogenic and reduces bacterial lung pathology

    Get PDF
    The therapeutic HIV-1 Tat protein vaccine is in advanced clinical development. Tuberculosis, the main AIDS co-infection, is highly endemic in areas where AIDS prevention through vaccination is needed. However, safety and immunogenicity of Tat vaccination in the course of Mycobacterium tuberculosis (Mtb) infection is still unknown and it prevents the possibility to administer the vaccine to Mtb-infected individuals. We addressed the interplay and effects of Tat vaccination on Mtb infection in immunocompetent mice

    HMGA1 induces EZH2 overexpression in human B-cell lymphomas

    No full text
    EZH2 is an enzymatic subunit of PRC2, an epigenetic regulator that triggers the methylation of the histone H3 lysine 27 silencing the transcription of several genes. EZH2 has a critical role in cancer progression, since its overexpression has been associated with increased cancer cell invasiveness, drug resistance and poor patient survival. However, the mechanisms accounting for EZH2 overexpression in cancer remain still unclear. Intriguingly, also HMGA protein overexpression is a feature of many human malignancies and correlates with the presence of metastases and a poor outcome. The HMGA proteins, including HMGA1 and HMGA2, belong to the architectural transcription factors that play a key role in the organization of chromatin structure. Here, we report a statistically significant correlation between HMGA1 and EZH2 expression in human lymphomas. We demonstrate that HMGA1 is able to bind EZH2 promoter and induce its activity. Consistently, silencing of HMGA1 expression results in the downregulation of the EZH2 levels leading to a decreased proliferation and migration rate of human lymphoma cell lines. Therefore, these data identify HMGA1 as an EZH2 activator, suggesting a novel molecular mechanism contributing to EZH2 overexpression in human malignancies and a synergism of these proteins in cancer progression
    corecore