3,065 research outputs found

    Stripe, checkerboard, and liquid-crystal ordering from anisotropic p-orbital Fermi surfaces in optical lattices

    Full text link
    We study instabilities of single-species fermionic atoms in the p-orbital bands in two-dimensional optical lattices at noninteger filling against interactions. Charge density wave and orbital density wave orders with stripe or checkerboard patterns are found for attractive and repulsive interactions, respectively. The superfluid phase, usually expected of attractively interacting fermions, is strongly suppressed. We also use field theory to analyze the possible phase-transitions from orbital stripe order to liquid-crystal phases and obtain the phase diagram. The condition of nearly-perfect Fermisurface nesting, which is key to the above results, is shown robustly independent of fermion fillings in such p-orbital systems, and the (2kF,±2kF)(2k_F,\pm2k_F) momentum of density wave oscillation is highly tunable. Such remarkable features show the promise of making those exotic orbital phases, which are of broad interest in condensed-matter physics, experimentally realizable with optical lattice gases.Comment: final version, 8 pages, 5 figure

    Bose-Einstein supersolid phase for a novel type of momentum dependent interaction

    Full text link
    A novel class of non-local interactions between bosons is found to favor a crystalline Bose-Einstein condensation ground state. By using both low energy effective field theory and variational wavefunction method, we compare this state not only with the homogeneous superfluid, as has been done previously, but also with the normal (non-superfluid) crystalline phase and obtain the phase diagram. The key characters are: the interaction potential displays a negative minimum at finite momentum which determines the wavevector of this supersolid phase; and the wavelength corresponding to the momentum minimum needs to be greater than the mean inter-boson distance.Comment: 4 pages 3 figures, fig 1 and fig 2 update

    Disorder induced field effect transistor in bilayer and trilayer graphene

    Full text link
    We propose use of disorder to produce a field effect transistor (FET) in biased bilayer and trilayer graphene. Modulation of the bias voltage can produce large variations in the conductance when the disorder's effects are confined to only one of the graphene layers. This effect is based on the bias voltage's ability to select which of the graphene layers carries current, and is not tied to the presence of a gap in the density of states. In particular, we demonstrate this effect in models of gapless ABA-stacked trilayer graphene, gapped ABC-stacked trilayer graphene, and gapped bilayer graphene.Comment: 21 pages, 7 figure

    Phase Structure of the Topological Anderson Insulator

    Full text link
    We study the disordered topological Anderson insulator in a 2-D (square not strip) geometry. We first report the phase diagram of finite systems and then study the evolution of phase boundaries when the system size is increased to a very large 1120×11201120 \times 1120 area. We establish that conductance quantization can occur without a bulk band gap, and that there are two distinct scaling regions with quantized conductance: TAI-I with a bulk band gap, and TAI-II with localized bulk states. We show that there is no intervening insulating phase between the bulk conduction phase and the TAI-I and TAI-II scaling regions, and that there is no metallic phase at the transition between the quantized and insulating phases. Centered near the quantized-insulating transition there are very broad peaks in the eigenstate size and fractal dimension d2d_2; in a large portion of the conductance plateau eigenstates grow when the disorder strength is increased. The fractal dimension at the peak maximum is d2≈1.5d_2 \approx 1.5. Effective medium theory (CPA, SCBA) predicts well the boundaries and interior of the gapped TAI-I scaling region, but fails to predict all boundaries save one of the ungapped TAI-II scaling region. We report conductance distributions near several phase transitions and compare them with critical conductance distributions for well-known models.Comment: Minor changes only in this versio

    Brigatinib Versus Alectinib in ALK-Positive NSCLC After Disease Progression on Crizotinib: Results of Phase 3 ALTA-3 Trial.

    Get PDF
    INTRODUCTION: This open-label, phase 3 trial (ALTA-3; NCT03596866) compared efficacy and safety of brigatinib versus alectinib for ALK+ NSCLC after disease progression on crizotinib. METHODS: Patients with advanced ALK+ NSCLC that progressed on crizotinib were randomized 1:1 to brigatinib 180 mg once daily (7-d lead-in, 90 mg) or alectinib 600 mg twice daily, aiming to test superiority. The primary end point was blinded independent review committee-assessed progression-free survival (PFS). Interim analysis for efficacy and futility was planned at approximately 70% of 164 expected PFS events. RESULTS: The population (N = 248; brigatinib, n = 125; alectinib, n = 123) was notable for long median duration of prior crizotinib (16.0-16.8 mo) and low rate of ALK fusion in baseline circulating tumor DNA (ctDNA; 78 of 232 [34%]). Median blinded independent review committee-assessed PFS was 19.3 months with brigatinib and 19.2 months with alectinib (hazard ratio = 0.97 [95% confidence interval: 0.66-1.42], p = 0.8672]). The study met futility criterion. Overall survival was immature (41 events [17%]). Exploratory analyses pooled across the treatment groups revealed median PFS of 11.1 versus 22.5 months in patients with versus without ctDNA-detectable ALK fusion at baseline (hazard ratio: 0.48 [95% confidence interval: 0.32-0.71]). Treatment-related adverse events in more than 30% of patients (brigatinib, alectinib) were elevated levels of blood creatine phosphokinase (70%, 29%), aspartate aminotransferase (53%, 38%), and alanine aminotransferase (40%, 36%). CONCLUSIONS: Brigatinib was not superior to alectinib for PFS in crizotinib-pretreated ALK+ NSCLC. Safety was consistent with the well-established and unique profiles of each drug. The low proportion of patients with ctDNA-detectable ALK fusion may account for prolonged PFS with both drugs in ALTA-3

    Tumor neoantigen heterogeneity impacts bystander immune inhibition of pancreatic cancer growth

    Get PDF
    The immunogenic clonal-fraction threshold in heterogeneous solid-tumor required to induce effective bystander-killing of non-immunogenic subclones is unknown. Pancreatic cancer poses crucial challenges for immune therapeutic interventions due to low mutational-burden and consequent lack of neoantigens. Here, we designed a model to incorporate artificial-neoantigens into genes-of -interest in cancer-cells and to test their potential to actuate bystander-killing. By precisely controlling a neoantigen's abundance in the tumor, we studied the impact of neoantigen frequency on immune-response and immune-escape. Our results showed single, strong, widely-expressed neoantigen could lead to robust antitumor response when over 80% of cancer cells express the neoantigen. Further, immunological assays demonstrated T-cell responses against non-target self-antigen on KRAS-oncoprotein, when we inoculated animals with a high frequency of tumor-cells expressing test-neoantigen. Using nanoparticle-based gene-therapy, we successfully altered tumor-microenvironment by perturbing interleukin-12 and interleukin-10 gene-expression. The subsequent microenvironment-remodeling reduced the neoantigen frequency threshold at which bioluminescent signal intensity for tumor-burden decreased 1.5-log-fold, marking robust tumor-growth inhibition, from 83% to 29%. Our results thus suggest bystander killing is inefficient in immunologically-cold tumors like pancreatic-cancer and requires high neoantigen abundance. However, bystander killing mediated antitumor response can be rescued by adjuvant-immune therapy

    Dark-adapted red flash ERGs in healthy adults

    Get PDF
    Purpose: The x-wave of the dark-adapted (DA) ERG to a red flash reflects DA cone function. This exploratory study of healthy adults aimed to investigate changes in the DA red ERG with flash strength and during dark adaptation to optimise visualisation and therefore quantification of the x-wave. Methods: The effect of altering red flash strength was investigated in four subjects by recording ERGs after 20 minutes dark adaptation to red flashes (0.2–2.0 cd s m-2) using skin electrodes and natural pupils. The effect of dark adaptation duration was investigated in 16 subjects during 20 minutes in the dark, by recording DA 1.5 red ERGs at 1, 2, 3, 4, 5, 10, 15 and 20 minutes. Results: For a dark adaption period of 20 minutes, the x-wave was more clearly visualised to weaker (< 0.6 cd s m-2) red flash strengths: to stronger flashes it became obscured by the b-wave. For red flashes of 1.5 cd s m-2, the x-wave was most prominent in ERGs recorded after 1–5 minutes of dark adaptation: with longer dark-adaptation, it was subsumed into the b-wave’s rising edge. Conclusions: This small study suggests that x-wave visibility in healthy subjects after 20 minutes dark adaptation is improved by using flashes weaker than around 0.6 cd s m-2; for flash strengths of 1.5 cd s m-2, x-wave visibility is enhanced by recording after only around 5 minutes of dark adaptation. No evidence was found that interim red flash ERGs affecting the dark-adapted state of the normal retina

    Topological semimetal in a fermionic optical lattice

    Full text link
    Optical lattices play a versatile role in advancing our understanding of correlated quantum matter. The recent implementation of orbital degrees of freedom in chequerboard and hexagonal optical lattices opens up a new thrust towards discovering novel quantum states of matter, which have no prior analogs in solid state electronic materials. Here, we demonstrate that an exotic topological semimetal emerges as a parity-protected gapless state in the orbital bands of a two-dimensional fermionic optical lattice. The new quantum state is characterized by a parabolic band-degeneracy point with Berry flux 2π2\pi, in sharp contrast to the π\pi flux of Dirac points as in graphene. We prove that the appearance of this topological liquid is universal for all lattices with D4_4 point group symmetry as long as orbitals with opposite parities hybridize strongly with each other and the band degeneracy is protected by odd parity. Turning on inter-particle repulsive interactions, the system undergoes a phase transition to a topological insulator whose experimental signature includes chiral gapless domain-wall modes, reminiscent of quantum Hall edge states.Comment: 6 pages, 3 figures and Supplementary Informatio
    • 

    corecore