3,065 research outputs found
Stripe, checkerboard, and liquid-crystal ordering from anisotropic p-orbital Fermi surfaces in optical lattices
We study instabilities of single-species fermionic atoms in the p-orbital
bands in two-dimensional optical lattices at noninteger filling against
interactions. Charge density wave and orbital density wave orders with stripe
or checkerboard patterns are found for attractive and repulsive interactions,
respectively. The superfluid phase, usually expected of attractively
interacting fermions, is strongly suppressed. We also use field theory to
analyze the possible phase-transitions from orbital stripe order to
liquid-crystal phases and obtain the phase diagram. The condition of
nearly-perfect Fermisurface nesting, which is key to the above results, is
shown robustly independent of fermion fillings in such p-orbital systems, and
the momentum of density wave oscillation is highly tunable.
Such remarkable features show the promise of making those exotic orbital
phases, which are of broad interest in condensed-matter physics, experimentally
realizable with optical lattice gases.Comment: final version, 8 pages, 5 figure
Bose-Einstein supersolid phase for a novel type of momentum dependent interaction
A novel class of non-local interactions between bosons is found to favor a
crystalline Bose-Einstein condensation ground state. By using both low energy
effective field theory and variational wavefunction method, we compare this
state not only with the homogeneous superfluid, as has been done previously,
but also with the normal (non-superfluid) crystalline phase and obtain the
phase diagram. The key characters are: the interaction potential displays a
negative minimum at finite momentum which determines the wavevector of this
supersolid phase; and the wavelength corresponding to the momentum minimum
needs to be greater than the mean inter-boson distance.Comment: 4 pages 3 figures, fig 1 and fig 2 update
Disorder induced field effect transistor in bilayer and trilayer graphene
We propose use of disorder to produce a field effect transistor (FET) in
biased bilayer and trilayer graphene. Modulation of the bias voltage can
produce large variations in the conductance when the disorder's effects are
confined to only one of the graphene layers. This effect is based on the bias
voltage's ability to select which of the graphene layers carries current, and
is not tied to the presence of a gap in the density of states. In particular,
we demonstrate this effect in models of gapless ABA-stacked trilayer graphene,
gapped ABC-stacked trilayer graphene, and gapped bilayer graphene.Comment: 21 pages, 7 figure
Phase Structure of the Topological Anderson Insulator
We study the disordered topological Anderson insulator in a 2-D (square not
strip) geometry. We first report the phase diagram of finite systems and then
study the evolution of phase boundaries when the system size is increased to a
very large area. We establish that conductance quantization
can occur without a bulk band gap, and that there are two distinct scaling
regions with quantized conductance: TAI-I with a bulk band gap, and TAI-II with
localized bulk states. We show that there is no intervening insulating phase
between the bulk conduction phase and the TAI-I and TAI-II scaling regions, and
that there is no metallic phase at the transition between the quantized and
insulating phases. Centered near the quantized-insulating transition there are
very broad peaks in the eigenstate size and fractal dimension ; in a large
portion of the conductance plateau eigenstates grow when the disorder strength
is increased. The fractal dimension at the peak maximum is .
Effective medium theory (CPA, SCBA) predicts well the boundaries and interior
of the gapped TAI-I scaling region, but fails to predict all boundaries save
one of the ungapped TAI-II scaling region. We report conductance distributions
near several phase transitions and compare them with critical conductance
distributions for well-known models.Comment: Minor changes only in this versio
Brigatinib Versus Alectinib in ALK-Positive NSCLC After Disease Progression on Crizotinib: Results of Phase 3 ALTA-3 Trial.
INTRODUCTION: This open-label, phase 3 trial (ALTA-3; NCT03596866) compared efficacy and safety of brigatinib versus alectinib for ALK+ NSCLC after disease progression on crizotinib. METHODS: Patients with advanced ALK+ NSCLC that progressed on crizotinib were randomized 1:1 to brigatinib 180 mg once daily (7-d lead-in, 90 mg) or alectinib 600 mg twice daily, aiming to test superiority. The primary end point was blinded independent review committee-assessed progression-free survival (PFS). Interim analysis for efficacy and futility was planned at approximately 70% of 164 expected PFS events. RESULTS: The population (N = 248; brigatinib, n = 125; alectinib, n = 123) was notable for long median duration of prior crizotinib (16.0-16.8 mo) and low rate of ALK fusion in baseline circulating tumor DNA (ctDNA; 78 of 232 [34%]). Median blinded independent review committee-assessed PFS was 19.3 months with brigatinib and 19.2 months with alectinib (hazard ratio = 0.97 [95% confidence interval: 0.66-1.42], p = 0.8672]). The study met futility criterion. Overall survival was immature (41 events [17%]). Exploratory analyses pooled across the treatment groups revealed median PFS of 11.1 versus 22.5 months in patients with versus without ctDNA-detectable ALK fusion at baseline (hazard ratio: 0.48 [95% confidence interval: 0.32-0.71]). Treatment-related adverse events in more than 30% of patients (brigatinib, alectinib) were elevated levels of blood creatine phosphokinase (70%, 29%), aspartate aminotransferase (53%, 38%), and alanine aminotransferase (40%, 36%). CONCLUSIONS: Brigatinib was not superior to alectinib for PFS in crizotinib-pretreated ALK+ NSCLC. Safety was consistent with the well-established and unique profiles of each drug. The low proportion of patients with ctDNA-detectable ALK fusion may account for prolonged PFS with both drugs in ALTA-3
Tumor neoantigen heterogeneity impacts bystander immune inhibition of pancreatic cancer growth
The immunogenic clonal-fraction threshold in heterogeneous solid-tumor required to induce effective bystander-killing of non-immunogenic subclones is unknown. Pancreatic cancer poses crucial challenges for immune therapeutic interventions due to low mutational-burden and consequent lack of neoantigens. Here, we designed a model to incorporate artificial-neoantigens into genes-of -interest in cancer-cells and to test their potential to actuate bystander-killing. By precisely controlling a neoantigen's abundance in the tumor, we studied the impact of neoantigen frequency on immune-response and immune-escape. Our results showed single, strong, widely-expressed neoantigen could lead to robust antitumor response when over 80% of cancer cells express the neoantigen. Further, immunological assays demonstrated T-cell responses against non-target self-antigen on KRAS-oncoprotein, when we inoculated animals with a high frequency of tumor-cells expressing test-neoantigen. Using nanoparticle-based gene-therapy, we successfully altered tumor-microenvironment by perturbing interleukin-12 and interleukin-10 gene-expression. The subsequent microenvironment-remodeling reduced the neoantigen frequency threshold at which bioluminescent signal intensity for tumor-burden decreased 1.5-log-fold, marking robust tumor-growth inhibition, from 83% to 29%. Our results thus suggest bystander killing is inefficient in immunologically-cold tumors like pancreatic-cancer and requires high neoantigen abundance. However, bystander killing mediated antitumor response can be rescued by adjuvant-immune therapy
Dark-adapted red flash ERGs in healthy adults
Purpose: The x-wave of the dark-adapted (DA) ERG to a red flash reflects DA cone function. This exploratory study of healthy adults aimed to investigate changes in the DA red ERG with flash strength and during dark adaptation to optimise visualisation and therefore quantification of the x-wave.
Methods: The effect of altering red flash strength was investigated in four subjects by recording ERGs after 20 minutes dark adaptation to red flashes (0.2â2.0 cd s m-2) using skin electrodes and natural pupils. The effect of dark adaptation duration was investigated in 16 subjects during 20 minutes in the dark, by recording DA 1.5 red ERGs at 1, 2, 3, 4, 5, 10, 15 and 20 minutes.
Results: For a dark adaption period of 20 minutes, the x-wave was more clearly visualised to weaker (< 0.6 cd s m-2) red flash strengths: to stronger flashes it became obscured by the b-wave. For red flashes of 1.5 cd s m-2, the x-wave was most prominent in ERGs recorded after 1â5 minutes of dark adaptation: with longer dark-adaptation, it was subsumed into the b-waveâs rising edge.
Conclusions: This small study suggests that x-wave visibility in healthy subjects after 20 minutes dark adaptation is improved by using flashes weaker than around 0.6 cd s m-2; for flash strengths of 1.5 cd s m-2, x-wave visibility is enhanced by recording after only around 5 minutes of dark adaptation. No evidence was found that interim red flash ERGs affecting the dark-adapted state of the normal retina
Topological semimetal in a fermionic optical lattice
Optical lattices play a versatile role in advancing our understanding of
correlated quantum matter. The recent implementation of orbital degrees of
freedom in chequerboard and hexagonal optical lattices opens up a new thrust
towards discovering novel quantum states of matter, which have no prior analogs
in solid state electronic materials. Here, we demonstrate that an exotic
topological semimetal emerges as a parity-protected gapless state in the
orbital bands of a two-dimensional fermionic optical lattice. The new quantum
state is characterized by a parabolic band-degeneracy point with Berry flux
, in sharp contrast to the flux of Dirac points as in graphene. We
prove that the appearance of this topological liquid is universal for all
lattices with D point group symmetry as long as orbitals with opposite
parities hybridize strongly with each other and the band degeneracy is
protected by odd parity. Turning on inter-particle repulsive interactions, the
system undergoes a phase transition to a topological insulator whose
experimental signature includes chiral gapless domain-wall modes, reminiscent
of quantum Hall edge states.Comment: 6 pages, 3 figures and Supplementary Informatio
- âŠ