22,713 research outputs found

    Smart Meter Privacy: A Utility-Privacy Framework

    Full text link
    End-user privacy in smart meter measurements is a well-known challenge in the smart grid. The solutions offered thus far have been tied to specific technologies such as batteries or assumptions on data usage. Existing solutions have also not quantified the loss of benefit (utility) that results from any such privacy-preserving approach. Using tools from information theory, a new framework is presented that abstracts both the privacy and the utility requirements of smart meter data. This leads to a novel privacy-utility tradeoff problem with minimal assumptions that is tractable. Specifically for a stationary Gaussian Markov model of the electricity load, it is shown that the optimal utility-and-privacy preserving solution requires filtering out frequency components that are low in power, and this approach appears to encompass most of the proposed privacy approaches.Comment: Accepted for publication and presentation at the IEEE SmartGridComm. 201

    Cooperation and Storage Tradeoffs in Power-Grids with Renewable Energy Resources

    Full text link
    One of the most important challenges in smart grid systems is the integration of renewable energy resources into its design. In this work, two different techniques to mitigate the time varying and intermittent nature of renewable energy generation are considered. The first one is the use of storage, which smooths out the fluctuations in the renewable energy generation across time. The second technique is the concept of distributed generation combined with cooperation by exchanging energy among the distributed sources. This technique averages out the variation in energy production across space. This paper analyzes the trade-off between these two techniques. The problem is formulated as a stochastic optimization problem with the objective of minimizing the time average cost of energy exchange within the grid. First, an analytical model of the optimal cost is provided by investigating the steady state of the system for some specific scenarios. Then, an algorithm to solve the cost minimization problem using the technique of Lyapunov optimization is developed and results for the performance of the algorithm are provided. These results show that in the presence of limited storage devices, the grid can benefit greatly from cooperation, whereas in the presence of large storage capacity, cooperation does not yield much benefit. Further, it is observed that most of the gains from cooperation can be obtained by exchanging energy only among a few energy harvesting sources

    Tanzania: Community Foundations Current Status, Facts and Figures from the 2010 CF-GSR Survey

    Get PDF
    This is a fact sheet information on community foundations in Tanzani

    Nonequilibrium Green's function theory for nonadiabatic effects in quantum electron transport

    Full text link
    We develop nonequilibribrium Green's function based transport theory, which includes effects of nonadiabatic nuclear motion in the calculation of the electric current in molecular junctions. Our approach is based on the separation of slow and fast timescales in the equations of motion for the Green's functions by means of the Wigner representation. Time derivatives with respect to central time serves as a small parameter in the perturbative expansion enabling the computation of nonadiabatic corrections to molecular Green's functions. Consequently, we produce series of analytic expressions for non-adiabatic electronic Green's functions (up to the second order in the central time derivatives); which depend not solely on instantaneous molecular geometry but likewise on nuclear velocities and accelerations. Extended formula for electric current is derived which accounts for the non-adiabatic corrections. This theory is concisely illustrated by the calculations on a model molecular junction

    Energy Efficient User Association and Power Allocation in Millimeter Wave Based Ultra Dense Networks with Energy Harvesting Base Stations

    Full text link
    Millimeter wave (mmWave) communication technologies have recently emerged as an attractive solution to meet the exponentially increasing demand on mobile data traffic. Moreover, ultra dense networks (UDNs) combined with mmWave technology are expected to increase both energy efficiency and spectral efficiency. In this paper, user association and power allocation in mmWave based UDNs is considered with attention to load balance constraints, energy harvesting by base stations, user quality of service requirements, energy efficiency, and cross-tier interference limits. The joint user association and power optimization problem is modeled as a mixed-integer programming problem, which is then transformed into a convex optimization problem by relaxing the user association indicator and solved by Lagrangian dual decomposition. An iterative gradient user association and power allocation algorithm is proposed and shown to converge rapidly to an optimal point. The complexity of the proposed algorithm is analyzed and the effectiveness of the proposed scheme compared with existing methods is verified by simulations.Comment: to appear, IEEE Journal on Selected Areas in Communications, 201

    Prolonged Intestinal Mucosal Barium Coating due to Ischemic Necrosis

    Get PDF
    A case of a 63-year-old man with small bowel ischemia six weeks after transplantation surgery is presented. Plain abdominal radiograph obtained several days after ingestion of barium shows the sign of prolonged barium coating indicating severe mucosal damage. Abdominal CT scan demonstrates small bowel wall thickening as well as pockets of peritoneal fluid collections. Most critically, CT allows visualization of subtle traces of dense barium within the dependent portions of this fluid indicating bowel perforation

    Managing Price Uncertainty in Prosumer-Centric Energy Trading: A Prospect-Theoretic Stackelberg Game Approach

    Full text link
    In this paper, the problem of energy trading between smart grid prosumers, who can simultaneously consume and produce energy, and a grid power company is studied. The problem is formulated as a single-leader, multiple-follower Stackelberg game between the power company and multiple prosumers. In this game, the power company acts as a leader who determines the pricing strategy that maximizes its profits, while the prosumers act as followers who react by choosing the amount of energy to buy or sell so as to optimize their current and future profits. The proposed game accounts for each prosumer's subjective decision when faced with the uncertainty of profits, induced by the random future price. In particular, the framing effect, from the framework of prospect theory (PT), is used to account for each prosumer's valuation of its gains and losses with respect to an individual utility reference point. The reference point changes between prosumers and stems from their past experience and future aspirations of profits. The followers' noncooperative game is shown to admit a unique pure-strategy Nash equilibrium (NE) under classical game theory (CGT) which is obtained using a fully distributed algorithm. The results are extended to account for the case of PT using algorithmic solutions that can achieve an NE under certain conditions. Simulation results show that the total grid load varies significantly with the prosumers' reference point and their loss-aversion level. In addition, it is shown that the power company's profits considerably decrease when it fails to account for the prosumers' subjective perceptions under PT
    corecore