41 research outputs found
Investigating the frontoparietal network in mental calculation in primary school children - An fMRI study
The frontoparietal network activated during calculation processing is investigated in a pediatric population. Subjects assessed correctness of two and three operand equations. Besides traditional frontoparietal activation, clear activation of sites associated with error processing was observed
Sources of contrast and acquisition methods in functional MRI of the human brain
L'Imagerie fonctionnelle par Résonance Magnétique (IRMf) a connu un développement important depuis sa découverte au début des années 1990. Basée le plus souvent sur l'effet BOLD (Blood Oxygenation Level Dependent), cette technique permet d'obtenir de façon totalement non-invasive des cartes d'activation cérébrale, avec de meilleures résolutions spatiale et temporelle que les méthodes préexistantes telles que la tomographie par émission de positrons (TEP). Facilement praticable au moyen des imageurs par RMN disponible dans les hôpitaux, elle a mené à de nombreuses applications dans le domaine des neurosciences et de l'étude des pathologies cérébrales.Il est maintenant bien établi que l'effet BOLD est dû à une augmentation de l'oxygénation du sang veineux dans les régions du cerveau où se produit l'activation neuronale, impliquant une diminution de la différence de susceptibilité magnétique entre le sang et les tissus environnants (la déoxyhémoglobine étant paramagnétique et l'oxyhémoglobine diamagnétique), et par conséquent un augmentation du signal si la méthode d'acquisition est sensible aux inhomogénéités de champ magnétique. Cependant, il reste encore de nombreuses inconnues quant aux mécanismes liant les variations d'oxygénation, de flux et de volume sanguin à l'augmentation de signal observée, et la dépendance du phénomène en des paramètres tels que l'intensité du champ, la résolution spatiale, et le type de séquence de RMN utilisée. La première partie de la thèse est donc consacrée à l'étude de l'effet BOLD, dans le cas particulier des contributions dues aux veines de drainage dans les séquences de type écho de gradient rendues sensibles au mouvement par l'ajout de gradients de champ. Le modèle développé montre que, contrairement au comportement suggéré par de précédentes publications, l'effet de ces gradients n'est pas une diminution monotone de la différence de signal lorsque l'intensité des gradients augmente. D'importantes oscillations sont produites par l'effet de phase dû au déplacement des spins du sang dans les gradients additionnels, et par la variation de cette phase suite à l'augmentation du flux sanguin. La validation expérimentale du modèle est réalisée au moyen de la séquence PRESTO (Principles of Echo-Shifting combined with a Train of Observations), c'est-à -dire une séquence en écho de gradient où des gradients supplémentaires permettent d'augmenter la sensibilité aux inhomogénéités de champ, et donc à l'effet BOLD. Un accord qualitatif avec la théorie est établi en montrant que la variation de signal observée peut augmenter lorsqu'on intensifie les gradients additionnels.Un autre source de débat continuel dans le domaine de l'IRMf réside dans l'optimalisation des méthodes d'acquisition, au point de vue notamment de leur sensibilité à l'effet BOLD, leurs résolutions spatiale et temporelle, leur sensibilité à divers artefacts tels que la perte de signal dans les zones présentant des inhomogénéités de champ à grande échelle, et la contamination des cartes d'activation par les contributions des grosses veines, qui peuvent être distantes du lieu d'activation réel. Les séquences en écho de spin sont connues pour être moins sensibles à ces deux derniers problèmes, c'est pourquoi la deuxième partie de la thèse est consacrée à une nouvelle technique permettant de donner une pondération T2 plutôt que T2* aux images. Le principe de base de la méthode n'est pas neuf, puisqu'il s'agit de la « Préparation T2 » (T2prep), qui consiste à atténuer l'aimantation longitudinale différemment selon la valeur du temps de relaxation T2, mais il n’avait jamais été appliqué à l’IRMf. Ses avantages par rapport à d’autres méthodes hybrides T2 et T2* sont principalement le gain en résolution temporelle et en dissipation d’énergie électromagnétique dans les tissus. Le contraste généré par ces séquences est étudié au moyen de solutions stationnaires des équations de Bloch. Des prédictions sont faites quant au contraste BOLD, sur base de ces solutions stationnaires et d’une description simplifiée de l’effet BOLD en termes de variations de T2 et T2*. Une méthode est proposée pour rendre le signal constant au travers du train d’impulsions en faisant varier l’angle de bascule d’une impulsion à l’autre, ce qui permet de diminuer le flou dans les images. Des expériences in vitro montrent un accord quantitatif excellent avec les prédictions théoriques quant à l’intensité des signaux mesurés, aussi bien dans le cas de l’angle constant que pour la série d’angles variables. Des expériences d’activation du cortex visuel démontrent la faisabilité de l’IRMf au moyen de séquences T2prep, et confirment les prédictions théoriques quant à la variation de signal causée par l’activation. La troisième partie de la thèse constitue la suite logique des deux premières, puisqu’elle est consacrée à une extension du principe de déplacement d’écho (echo-shifting) aux séquences en écho de spin à l’état stationnaire, ce qui permet d’obtenir une pondération T2 et T2* importante tout en maintenant un temps de répétition court, et donc une bonne résolution temporelle. Une analyse théorique approfondie de la formation du signal dans de telles séquences est présentée. Elle est basée en partie sur la technique de résolution des équations de Bloch utilisée dans la deuxième partie, qui consiste à calculer l’aimantation d’état stationnaire en fonction des angles de précession dans le plan transverse, puis à intégrer sur les isochromats pour obtenir le signal résultant d’un voxel (volume element). Le problème est aussi envisagé sous l’angle des « trajectoires de cohérence », c’est-à -dire la subdivision du signal en composantes plus ou moins déphasées, par l’effet combiné des impulsions RF, des gradients appliqués et des inhomogénéités du champ magnétique principal. Cette approche permet d’interpréter l’intensité du signal dans les séquences à écho déplacé comme le résultat d’interférences destructives entre diverses composantes physiquement interprétables. Elle permet de comprendre comment la variation de la phase de l’impulsion d’excitation (RF-spoiling) élimine ces interférences. Des expériences in vitro montrent un accord quantitatif excellent avec les calculs théoriques, et la faisabilité de la méthode in vivo est établie. Il n’est pas encore possible de conclure quant à l’applicabilité de la nouvelle méthode dans le cadre de l’IRMf, mais l’approche théorique proposée a en tout cas permis de revoir en profondeur les mécanismes de formation du signal pour l’ensemble des méthodes à écho déplacé, puisque le cas de l’écho de gradient s’avère complètement similaire au cas de l’écho de spin.La thèse évolue donc progressivement de la modélisation de l’effet BOLD vers la conception de séquences, permettant ainsi d’aborder deux aspects fondamentaux de la physique de l’IRMf.Doctorat en sciences appliquéesinfo:eu-repo/semantics/nonPublishe
Sources of contrast and acquisition methods in functional MRI of the human brain
<p align="justify">L'Imagerie fonctionnelle par Résonance Magnétique (IRMf) a connu un développement important depuis sa découverte au début des années 1990. Basée le plus souvent sur l'effet BOLD (Blood Oxygenation Level Dependent), cette technique permet d'obtenir de façon totalement non-invasive des cartes d'activation cérébrale, avec de meilleures résolutions spatiale et temporelle que les méthodes préexistantes telles que la tomographie par émission de positrons (TEP). Facilement praticable au moyen des imageurs par RMN disponible dans les hôpitaux, elle a mené à de nombreuses applications dans le domaine des neurosciences et de l'étude des pathologies cérébrales.</p><p><p align="justify">Il est maintenant bien établi que l'effet BOLD est dû à une augmentation de l'oxygénation du sang veineux dans les régions du cerveau où se produit l'activation neuronale, impliquant une diminution de la différence de susceptibilité magnétique entre le sang et les tissus environnants (la déoxyhémoglobine étant paramagnétique et l'oxyhémoglobine diamagnétique), et par conséquent un augmentation du signal si la méthode d'acquisition est sensible aux inhomogénéités de champ magnétique. Cependant, il reste encore de nombreuses inconnues quant aux mécanismes liant les variations d'oxygénation, de flux et de volume sanguin à l'augmentation de signal observée, et la dépendance du phénomène en des paramètres tels que l'intensité du champ, la résolution spatiale, et le type de séquence de RMN utilisée. La première partie de la thèse est donc consacrée à l'étude de l'effet BOLD, dans le cas particulier des contributions dues aux veines de drainage dans les séquences de type écho de gradient rendues sensibles au mouvement par l'ajout de gradients de champ. Le modèle développé montre que, contrairement au comportement suggéré par de précédentes publications, l'effet de ces gradients n'est pas une diminution monotone de la différence de signal lorsque l'intensité des gradients augmente. D'importantes oscillations sont produites par l'effet de phase dû au déplacement des spins du sang dans les gradients additionnels, et par la variation de cette phase suite à l'augmentation du flux sanguin. La validation expérimentale du modèle est réalisée au moyen de la séquence PRESTO (Principles of Echo-Shifting combined with a Train of Observations), c'est-à -dire une séquence en écho de gradient où des gradients supplémentaires permettent d'augmenter la sensibilité aux inhomogénéités de champ, et donc à l'effet BOLD. Un accord qualitatif avec la théorie est établi en montrant que la variation de signal observée peut augmenter lorsqu'on intensifie les gradients additionnels.</p><p><p align="justify">Un autre source de débat continuel dans le domaine de l'IRMf réside dans l'optimalisation des méthodes d'acquisition, au point de vue notamment de leur sensibilité à l'effet BOLD, leurs résolutions spatiale et temporelle, leur sensibilité à divers artefacts tels que la perte de signal dans les zones présentant des inhomogénéités de champ à grande échelle, et la contamination des cartes d'activation par les contributions des grosses veines, qui peuvent être distantes du lieu d'activation réel. Les séquences en écho de spin sont connues pour être moins sensibles à ces deux derniers problèmes, c'est pourquoi la deuxième partie de la thèse est consacrée à une nouvelle technique permettant de donner une pondération T2 plutôt que T2* aux images. Le principe de base de la méthode n'est pas neuf, puisqu'il s'agit de la « Préparation T2 » (T2prep), qui consiste à atténuer l'aimantation longitudinale différemment selon la valeur du temps de relaxation T2, mais il n’avait jamais été appliqué à l’IRMf. Ses avantages par rapport à d’autres méthodes hybrides T2 et T2* sont principalement le gain en résolution temporelle et en dissipation d’énergie électromagnétique dans les tissus. Le contraste généré par ces séquences est étudié au moyen de solutions stationnaires des équations de Bloch. Des prédictions sont faites quant au contraste BOLD, sur base de ces solutions stationnaires et d’une description simplifiée de l’effet BOLD en termes de variations de T2 et T2*. Une méthode est proposée pour rendre le signal constant au travers du train d’impulsions en faisant varier l’angle de bascule d’une impulsion à l’autre, ce qui permet de diminuer le flou dans les images. Des expériences in vitro montrent un accord quantitatif excellent avec les prédictions théoriques quant à l’intensité des signaux mesurés, aussi bien dans le cas de l’angle constant que pour la série d’angles variables. Des expériences d’activation du cortex visuel démontrent la faisabilité de l’IRMf au moyen de séquences T2prep, et confirment les prédictions théoriques quant à la variation de signal causée par l’activation.</p><p><p align="justify"> La troisième partie de la thèse constitue la suite logique des deux premières, puisqu’elle est consacrée à une extension du principe de déplacement d’écho (echo-shifting) aux séquences en écho de spin à l’état stationnaire, ce qui permet d’obtenir une pondération T2 et T2* importante tout en maintenant un temps de répétition court, et donc une bonne résolution temporelle. Une analyse théorique approfondie de la formation du signal dans de telles séquences est présentée. Elle est basée en partie sur la technique de résolution des équations de Bloch utilisée dans la deuxième partie, qui consiste à calculer l’aimantation d’état stationnaire en fonction des angles de précession dans le plan transverse, puis à intégrer sur les isochromats pour obtenir le signal résultant d’un voxel (volume element). Le problème est aussi envisagé sous l’angle des « trajectoires de cohérence », c’est-à -dire la subdivision du signal en composantes plus ou moins déphasées, par l’effet combiné des impulsions RF, des gradients appliqués et des inhomogénéités du champ magnétique principal. Cette approche permet d’interpréter l’intensité du signal dans les séquences à écho déplacé comme le résultat d’interférences destructives entre diverses composantes physiquement interprétables. Elle permet de comprendre comment la variation de la phase de l’impulsion d’excitation (RF-spoiling) élimine ces interférences. Des expériences in vitro montrent un accord quantitatif excellent avec les calculs théoriques, et la faisabilité de la méthode in vivo est établie. Il n’est pas encore possible de conclure quant à l’applicabilité de la nouvelle méthode dans le cadre de l’IRMf, mais l’approche théorique proposée a en tout cas permis de revoir en profondeur les mécanismes de formation du signal pour l’ensemble des méthodes à écho déplacé, puisque le cas de l’écho de gradient s’avère complètement similaire au cas de l’écho de spin.</p><p><p align="justify">La thèse évolue donc progressivement de la modélisation de l’effet BOLD vers la conception de séquences, permettant ainsi d’aborder deux aspects fondamentaux de la physique de l’IRMf.</p><p>Doctorat en sciences appliquéesinfo:eu-repo/semantics/nonPublishe
Additional Gradients and Large Vessel Contributions in fMRI: a Modeling Approach
abs. 1175info:eu-repo/semantics/nonPublishe
Modified SSFP sequence for transient signal optimization
402info:eu-repo/semantics/nonPublishe
Diffusion-weighted balanced-FFE imaging using eddy-current compensation
Proc. Intl. Soc. Mag. Reson. Med.info:eu-repo/semantics/publishe
Fat Attenuation Using a Dual Steady-State Balanced-SSFP Sequence
info:eu-repo/semantics/publishe
New insights into the mechanisms of signal formation in RF-spoiled gradient echo sequences.
RF spoiling is a well established method to produce T1-weighted images with short repetition time gradient-echo sequences, by eliminating coherent transverse magnetization with appropriate RF phase modulation. This paper presents two novel approaches to describe signal formation in such sequences. Both methods rely on the formulation of RF spoiling as a linear increase of the precession angle between RF pulses, which is an alternative to the commonly used quadratic pulse phase scheme. The first technique demonstrates that a steady state signal can be obtained by integrating over all precession angles within the voxel, in spite of the lack of a genuine steady-state for separate isochromats. This clear mathematical framework allows a straightforward incorporation of offresonance effects and detector phase settings. Moreover, it naturally introduces the need for a large net gradient area per repetition interval. In a second step a modified partition method including RF spoiling is developed to obtain explicit expressions for all signal components. This provides a physical interpretation of the deviations from ideal spoiling behavior in FLASH and echo-shifted sequences. The results of the partition method in the small flip angle regime are compared with numerical simulations based on a Fourier decomposition of magnetization states. Measurements performed with in vitro solutions were in good agreement with numerical simulations at short relaxation times (T1/TR = 32 and T2/TR = 4), larger deviations occurred at long relaxation times (T1/TR =114 and T2/TR = 82).RF Spoiling; signal components.
3D Techniques in BOLD fMRI: Comparison of PRESTO and Standard EPI
info:eu-repo/semantics/nonPublishe