192 research outputs found
Modelling the black hole silhouette in Sgr A* with ion tori
We calculate the "observed at infinity" image and spectrum of the accretion
structure in Sgr A*, by modelling it as an optically thin, constant angular
momentum ion torus in hydrodynamic equilibrium. The physics we consider
includes a two-temperature plasma, a toroidal magnetic field, as well as
radiative cooling by bremsstrahlung, synchrotron and inverse Compton processes.
Our relativistic model has the virtue of being fully analytic and very simple,
depending only on eight tunable parameters: the black hole spin and the
inclination of the spin axis to our line of sight, the torus angular momentum,
the polytropic index, the magnetic to total pressure ratio, the central values
of density and electron temperature and the ratio of electron to ion
temperatures. The observed image and spectrum are calculated numerically using
the ray-tracing code GYOTO. Our results demonstrate that the ion torus model is
able to account for the main features of the accretion structure surrounding
Sgr A*.Comment: 11 pages, 10 figures, submitted to A &
Imaging the Schwarzschild-radius-scale Structure of M87 with the Event Horizon Telescope Using Sparse Modeling
We propose a new imaging technique for radio and optical/infrared interferometry. The proposed technique reconstructs the image from the visibility amplitude and closure phase, which are standard data products of short-millimeter very long baseline interferometers such as the Event Horizon Telescope (EHT) and optical/infrared interferometers, by utilizing two regularization functions: the ℓ_1-norm and total variation (TV) of the brightness distribution. In the proposed method, optimal regularization parameters, which represent the sparseness and effective spatial resolution of the image, are derived from data themselves using cross-validation (CV). As an application of this technique, we present simulated observations of M87 with the EHT based on four physically motivated models. We confirm that ℓ_1 + TV regularization can achieve an optimal resolution of ~20%–30% of the diffraction limit λ/D_(max), which is the nominal spatial resolution of a radio interferometer. With the proposed technique, the EHT can robustly and reasonably achieve super-resolution sufficient to clearly resolve the black hole shadow. These results make it promising for the EHT to provide an unprecedented view of the event-horizon-scale structure in the vicinity of the supermassive black hole in M87 and also the Galactic center Sgr A*
Binary black hole shadows, chaotic scattering and the Cantor set
We investigate the qualitative features of binary black hole shadows using the model of two
extremally charged black holes in static equilibrium (a Majumdar–Papapetrou solution). Our
perspective is that binary spacetimes are natural exemplars of chaotic scattering, because they
admit more than one fundamental null orbit, and thus an uncountably infinite set of perpetual null
orbits which generate scattering singularities in initial data. Inspired by the three-disc model, we
develop an appropriate symbolic dynamics to describe planar null geodesics on the double black
hole spacetime. We show that a one-dimensional (1D) black hole shadow may constructed through
an iterative procedure akin to the construction of the Cantor set; thus the 1D shadow is self-similar.
Next, we study non-planar rays, to understand how angular momentum affects the existence and
properties of the fundamental null orbits. Taking slices through 2D shadows, we observe three
types of 1D shadow: regular, Cantor-like, and highly chaotic. The switch from Cantor-like to
regular occurs where outer fundamental orbits are forbidden by angular momentum. The highly
chaotic part is associated with an unexpected feature: stable and bounded null orbits, which exist
around two black holes of equal mass M separated by a1 < a < √
2a1, where a1 = 4M/√
27. To
show how this possibility arises, we define a certain potential function and classify its stationary
points. We conjecture that the highly chaotic parts of the 2D shadow possess the Wada property.
Finally, we consider the possibility of following null geodesics through event horizons, and chaos in
the maximally extended spacetime
A [4Fe-4S]-Fe(CO)(CN)-L-cysteine intermediate is the first organometallic precursor in [FeFe] hydrogenase H-cluster bioassembly.
Biosynthesis of the [FeFe] hydrogenase active site (the 'H-cluster') requires the interplay of multiple proteins and small molecules. Among them, the radical S-adenosylmethionine enzyme HydG, a tyrosine lyase, has been proposed to generate a complex that contains an Fe(CO)2(CN) moiety that is eventually incorporated into the H-cluster. Here we describe the characterization of an intermediate in the HydG reaction: a [4Fe-4S][(Cys)Fe(CO)(CN)] species, 'Complex A', in which a CO, a CN- and a cysteine (Cys) molecule bind to the unique 'dangler' Fe site of the auxiliary [5Fe-4S] cluster of HydG. The identification of this intermediate-the first organometallic precursor to the H-cluster-validates the previously hypothesized HydG reaction cycle and provides a basis for elucidating the biosynthetic origin of other moieties of the H-cluster
Detection of intrinsic source structure at ~3 Schwarzschild radii with Millimeter-VLBI observations of SAGITTARIUS A*
We report results from very long baseline interferometric (VLBI) observations
of the supermassive black hole in the Galactic center, Sgr A*, at 1.3 mm (230
GHz). The observations were performed in 2013 March using six VLBI stations in
Hawaii, California, Arizona, and Chile. Compared to earlier observations, the
addition of the APEX telescope in Chile almost doubles the longest baseline
length in the array, provides additional {\it uv} coverage in the N-S
direction, and leads to a spatial resolution of 30 as (3
Schwarzschild radii) for Sgr A*. The source is detected even at the longest
baselines with visibility amplitudes of 4-13% of the total flux density.
We argue that such flux densities cannot result from interstellar refractive
scattering alone, but indicate the presence of compact intrinsic source
structure on scales of 3 Schwarzschild radii. The measured nonzero
closure phases rule out point-symmetric emission. We discuss our results in the
context of simple geometric models that capture the basic characteristics and
brightness distributions of disk- and jet-dominated models and show that both
can reproduce the observed data. Common to these models are the brightness
asymmetry, the orientation, and characteristic sizes, which are comparable to
the expected size of the black hole shadow. Future 1.3 mm VLBI observations
with an expanded array and better sensitivity will allow a more detailed
imaging of the horizon-scale structure and bear the potential for a deep
insight into the physical processes at the black hole boundary.Comment: 11 pages, 5 figures, accepted to Ap
- …