1,627 research outputs found
Disambiguating the role of blood flow and global signal with partial information decomposition
Global signal (GS) is an ubiquitous construct in resting state functional magnetic resonance imaging (rs-fMRI), associated to nuisance, but containing by definition most of the neuronal signal. Global signal regression (GSR) effectively removes the impact of physiological noise and other artifacts, but at the same time it alters correlational patterns in unpredicted ways. Performing GSR taking into account the underlying physiology (mainly the blood arrival time) has been proven to be beneficial. From these observations we aimed to: 1) characterize the effect of GSR on network-level functional connectivity in a large dataset; 2) assess the complementary role of global signal and vessels; and 3) use the framework of partial information decomposition to further look into the joint dynamics of the global signal and vessels, and their respective influence on the dynamics of cortical areas. We observe that GSR affects intrinsic connectivity networks in the connectome in a non-uniform way. Furthermore, by estimating the predictive information of blood flow and the global signal using partial information decomposition, we observe that both signals are present in different amounts across intrinsic connectivity networks. Simulations showed that differences in blood arrival time can largely explain this phenomenon, while using hemodynamic and calcium mouse recordings we were able to confirm the presence of vascular effects, as calcium recordings lack hemodynamic information. With these results we confirm network-specific effects of GSR and the importance of taking blood flow into account for improving de-noising methods. Additionally, and beyond the mere issue of data denoising, we quantify the diverse and complementary effect of global and vessel BOLD signals on the dynamics of cortical areas
Mind over chatter: plastic up-regulation of the fMRI alertness network by EEG neurofeedback
EEG neurofeedback (NFB) is a brain-computer interface (BCI) approach used to shape brain oscillations by means of real-time feedback from the electroencephalogram (EEG), which is known to reflect neural activity across cortical networks. Although NFB is being evaluated as a novel tool for treating brain disorders, evidence is scarce on the mechanism of its impact on brain function. In this study with 34 healthy participants, we examined whether, during the performance of an attentional auditory oddball task, the functional connectivity strength of distinct fMRI networks would be plastically altered after a 30-min NFB session of alpha-band reduction (n=17) versus a sham-feedback condition (n=17). Our results reveal that compared to sham, NFB induced a specific increase of functional connectivity within the alertness/salience network (dorsal anterior and mid cingulate), which was detectable 30 minutes after termination of training. Crucially, these effects were significantly correlated with reduced mind-wandering 'on-task' and were coupled to NFB-mediated resting state reductions in the alpha-band (8-12 Hz). No such relationships were evident for the sham condition. Although group default-mode network (DMN) connectivity was not significantly altered following NFB, we observed a positive association between modulations of resting alpha amplitude and precuneal connectivity, both correlating positively with frequency of mind-wandering. Our findings demonstrate a temporally direct, plastic impact of NFB on large-scale brain functional networks, and provide promising neurobehavioral evidence supporting its use as a noninvasive tool to modulate brain function in health and disease
Block Coordinate Descent for Sparse NMF
Nonnegative matrix factorization (NMF) has become a ubiquitous tool for data
analysis. An important variant is the sparse NMF problem which arises when we
explicitly require the learnt features to be sparse. A natural measure of
sparsity is the L norm, however its optimization is NP-hard. Mixed norms,
such as L/L measure, have been shown to model sparsity robustly, based
on intuitive attributes that such measures need to satisfy. This is in contrast
to computationally cheaper alternatives such as the plain L norm. However,
present algorithms designed for optimizing the mixed norm L/L are slow
and other formulations for sparse NMF have been proposed such as those based on
L and L norms. Our proposed algorithm allows us to solve the mixed norm
sparsity constraints while not sacrificing computation time. We present
experimental evidence on real-world datasets that shows our new algorithm
performs an order of magnitude faster compared to the current state-of-the-art
solvers optimizing the mixed norm and is suitable for large-scale datasets
Recommended from our members
Aberrant activity in conceptual networks underlies N400 deficits and unusual thoughts in schizophrenia.
BackgroundThe N400 event-related potential (ERP) is triggered by meaningful stimuli that are incongruous, or unmatched, with their semantic context. Functional magnetic resonance imaging (fMRI) studies have identified brain regions activated by semantic incongruity, but their precise links to the N400 ERP are unclear. In schizophrenia (SZ), N400 amplitude reduction is thought to reflect overly broad associations in semantic networks, but the abnormalities in brain networks underlying deficient N400 remain unknown. We utilized joint independent component analysis (JICA) to link temporal patterns in ERPs to neuroanatomical patterns from fMRI and investigate relationships between N400 amplitude and neuroanatomical activation in SZ patients and healthy controls (HC).MethodsSZ patients (n = 24) and HC participants (n = 25) performed a picture-word matching task, in which words were either matched (APPLE→apple) by preceding pictures, or were unmatched by semantically related (in-category; IC, APPLE→lemon) or unrelated (out of category; OC, APPLE→cow) pictures, in separate ERP and fMRI sessions. A JICA "data fusion" analysis was conducted to identify the fMRI brain regions specifically associated with the ERP N400 component. SZ and HC loading weights were compared and correlations with clinical symptoms were assessed.ResultsJICA identified an ERP-fMRI "fused" component that captured the N400, with loading weights that were reduced in SZ. The JICA map for the IC condition showed peaks of activation in the cingulate, precuneus, bilateral temporal poles and cerebellum, whereas the JICA map from the OC condition was linked primarily to visual cortical activation and the left temporal pole. Among SZ patients, fMRI activity from the IC condition was inversely correlated with unusual thought content.ConclusionsThe neural networks associated with the N400 ERP response to semantic violations depends on conceptual relatedness. These findings are consistent with a distributed network underlying neural responses to semantic incongruity including unimodal visual areas as well as integrative, transmodal areas. Unusual thoughts in SZ may reflect impaired processing in transmodal hub regions such as the precuneus, leading to overly broad semantic associations
Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia
Pattern classification of brain imaging data can enable the automatic detection of differences in cognitive processes of specific groups of interest. Furthermore, it can also give neuroanatomical information related to the regions of the brain that are most relevant to detect these differences by means of feature selection procedures, which are also well-suited to deal with the high dimensionality of brain imaging data. This work proposes the application of recursive feature elimination using a machine learning algorithm based on composite kernels to the classification of healthy controls and patients with schizophrenia. This framework, which evaluates nonlinear relationships between voxels, analyzes whole-brain fMRI data from an auditory task experiment that is segmented into anatomical regions and recursively eliminates the uninformative ones based on their relevance estimates, thus yielding the set of most discriminative brain areas for group classification. The collected data was processed using two analysis methods: the general linear model (GLM) and independent component analysis (ICA). GLM spatial maps as well as ICA temporal lobe and default mode component maps were then input to the classifier. A mean classification accuracy of up to 95% estimated with a leave-two-out cross-validation procedure was achieved by doing multi-source data classification. In addition, it is shown that the classification accuracy rate obtained by using multi-source data surpasses that reached by using single-source data, hence showing that this algorithm takes advantage of the complimentary nature of GLM and ICAPublicad
Combination of Resting State fMRI, DTI, and sMRI Data to Discriminate Schizophrenia by N-way MCCA + jICA
Multimodal brain imaging data have shown increasing utility in answering both scientifically interesting and clinically relevant questions. Each brain imaging technique provides a different view of brain function or structure, while multimodal fusion capitalizes on the strength of each and may uncover hidden relationships that can merge findings from separate neuroimaging studies. However, most current approaches have focused on pair-wise fusion and there is still relatively little work on N-way data fusion and examination of the relationships among multiple data types. We recently developed an approach called “mCCA + jICA” as a novel multi-way fusion method which is able to investigate the disease risk factors that are either shared or distinct across multiple modalities as well as the full correspondence across modalities. In this paper, we applied this model to combine resting state fMRI (amplitude of low-frequency fluctuation, ALFF), gray matter (GM) density, and DTI (fractional anisotropy, FA) data, in order to elucidate the abnormalities underlying schizophrenia patients (SZs, n = 35) relative to healthy controls (HCs, n = 28). Both modality-common and modality-unique abnormal regions were identified in SZs, which were then used for successful classification for seven modality-combinations, showing the potential for a broad applicability of the mCCA + jICA model and its results. In addition, a pair of GM-DTI components showed significant correlation with the positive symptom subscale of Positive and Negative Syndrome Scale (PANSS), suggesting that GM density changes in default model network along with white-matter disruption in anterior thalamic radiation are associated with increased positive PANSS. Findings suggest the DTI anisotropy changes in frontal lobe may relate to the corresponding functional/structural changes in prefrontal cortex and superior temporal gyrus that are thought to play a role in the clinical expression of SZ
- …
