2 research outputs found

    A splitting theorem for Kahler manifolds whose Ricci tensors have constant eigenvalues

    Full text link
    It is proved that a compact Kahler manifold whose Ricci tensor has two distinct, constant, non-negative eigenvalues is locally the product of two Kahler-Einstein manifolds. A stronger result is established for the case of Kahler surfaces. Irreducible Kahler manifolds with two distinct, constant eigenvalues of the Ricci tensor are shown to exist in various situations: there are homogeneous examples of any complex dimension n > 1, if one eigenvalue is negative and the other positive or zero, and of any complex dimension n > 2, if the both eigenvalues are negative; there are non-homogeneous examples of complex dimension 2, if one of the eigenvalues is zero. The problem of existence of Kahler metrics whose Ricci tensor has two distinct, constant eigenvalues is related to the celebrated (still open) Goldberg conjecture. Consequently, the irreducible homogeneous examples with negative eigenvalues give rise to complete, Einstein, strictly almost Kahler metrics of any even real dimension greater than 4.Comment: 18 pages; final version; accepted for publication in International Journal of Mathematic

    PT-symmetry, indefinite metric, and nonlinear quantum mechanics

    Get PDF
    If a Hamiltonian of a quantum system is symmetric under space-time reflection, then the associated eigenvalues can be real. A conjugation operation for quantum states can then be defined in terms of space-time reflection, but the resulting Hilbert space inner product is not positive definite and gives rise to an interpretational difficulty. One way of resolving this difficulty is to introduce a superselection rule that excludes quantum states having negative norms. It is shown here that a quantum theory arising in this way gives an example of Kibble’s nonlinear quantum mechanics, with the property that the state space has a constant negative curvature. It then follows from the positive curvature theorem that the resulting quantum theory is not physically viable. This conclusion also has implications to other quantum theories obtained from the imposition of analogous superselection rules
    corecore