8 research outputs found

    Platform-independent Robust Query Processing

    No full text
    To address the classical selectivity estimation problem in databases, a radically different approach called PlanBouquet was recently proposed in 3], wherein the estimation process is completely abandoned and replaced with a calibrated discovery mechanism. The beneficial outcome of this new construction is that, for the first time, provable guarantees are obtained on worst-case performance, thereby facilitating robust query processing. The PlanBouquet formulation suffers, however, from a systemic drawback - the performance bound is a function of not only the query, but also the optimizer's behavioral profile over the underlying database platform. As a result, there are adverse consequences: (i) the bound value becomes highly variable, depending on the specifics of the current operating environment, and (ii) it becomes infeasible to compute the value without substantial investments in preprocessing overheads. In this paper, we present SpillBound, a new query processing algorithm that retains the core strength of the PlanBouquet discovery process, but reduces the bound dependency to only the query. Specifically, SpillBound delivers a worst-case multiplicative bound of D-2 + 3D, where D is simply the number of error-prone predicates in the user query. Consequently, the bound value becomes independent of the optimizer and the database platform, and the guarantee can be issued just by inspecting the query, without incurring any additional computational effort. We go on to prove that SpillBound is within an O(D) factor of the best possible deterministic selectivity discovery algorithm in its class. Further, a detailed empirical evaluation over the standard TPC-H and TPC-DS benchmarks indicates that SpillBound provides markedly superior worst-case performance as compared to PlanBouquet in practice. Therefore, in an overall sense, SpillBound offers a substantive step forward in the quest for robust query processing

    The Tumor Suppressor Cdkn3 Is Required for Maintaining the Proper Number of Centrosomes by Regulating the Centrosomal Stability of Mps1

    Get PDF
    Supernumerary centrosomes promote the assembly of abnormal spindles in many human cancers. The observation that modest changes in the centrosomal levels of Mps1 kinase can cause centrosome overduplication in human cells suggests the existence of a regulatory system that may tightly control its centrosomal stability. Here, we show that Cdkn3, a Cdk-associated phosphatase, prevents Mps1-mediated centrosome overduplication. We identify Cdkn3 as a direct binding partner of Mps1. The interaction between Mps1 and Cdkn3 is required for Mps1 to recruit Cdkn3 to centrosomes. Subsequently, Mps1-bound Cdkn3 forms a regulatory system that controls the centrosomal levels of Mps1 through proteasome-mediated degradation and thereby prevents Mps1-mediated centrosome overduplication. Conversely, knockdown of Cdkn3 stabilizes Mps1 at centrosomes, which promotes centrosome overduplication. We suggest that Mps1 and Cdkn3 form a self-regulated feedback loop at centrosomes to tightly control the centrosomal levels of Mps1, which prevents centrosome overduplication in human cells

    Platform-Independent Robust Query Processing

    No full text

    CoA synthase regulates mitotic fidelity via CBP-mediated acetylation

    No full text
    The temporal activation of kinases and timely ubiquitin-mediated degradation is central to faithful mitosis. Here the authors show that acetylation controlled by Coenzyme A synthase (COASY) and acetyltransferase CBP constitutes a mechanism that ensures faithful mitosis

    The Greatwall kinase safeguards the genome integrity by affecting the kinome activity in mitosis

    No full text
    Progression through mitosis is balanced by the timely regulation of phosphorylation and dephosphorylation events ensuring the correct segregation of chromosomes before cytokinesis. This balance is regulated by the opposing actions of CDK1 and PP2A, as well as the Greatwall kinase/MASTL. MASTL is commonly overexpressed in cancer, which makes it a potential therapeutic anticancer target. Loss of Mastl induces multiple chromosomal errors that lead to the accumulation of micronuclei and multilobulated cells in mitosis. Our analyses revealed that loss of Mastl leads to chromosome breaks and abnormalities impairing correct segregation. Phospho-proteomic data for Mastl knockout cells revealed alterations in proteins implicated in multiple processes during mitosis including double-strand DNA damage repair. In silico prediction of the kinases with affected activity unveiled NEK2 to be regulated in the absence of Mastl. We uncovered that, RAD51AP1, involved in regulation of homologous recombination, is phosphorylated by NEK2 and CDK1 but also efficiently dephosphorylated by PP2A/B55. Our results suggest that MastlKO disturbs the equilibrium of the mitotic phosphoproteome that leads to the disruption of DNA damage repair and triggers an accumulation of chromosome breaks even in noncancerous cells
    corecore