3 research outputs found

    A Self-powered Module with Localization and Tracking System for Paintball

    Full text link
    Abstract. In spite of the popularity of wireless sensor networks (WSN), their application scenarios are still scanty. In this paper we apply the WSN paradigm to the entertainment area, and in particular to the domain of Paintball. This niche scenario poses challenges in terms of player localization and wireless sen-sor node lifetime. The main goal of localization in this context is to locate and track the player in order to facilitate his/her orientation, and to increase the level of safety. Long term operation could be achieved by adopting appropriate hardware components, such as storage elements, harvesting component, and a novel circuit solution. In this work we present a decentralized localization and tracking system for Paintball and describe the current status of the development of a self-powered module to be used between a wireless node and an energy harvesting component.

    Simulation and Evaluation of Mixed-Mode Environments: Towards Higher Quality of Simulations

    No full text
    Abstract. For rescue and surveillance scenarios, the Mixed-Mode Environments (MMEs) for data acquisition, processing, and dissemination have been proposed. Evaluation of the algorithms and protocols developed for such environments before deployment is vital. However, there is a lack of realistic testbeds for MMEs due to reasons such as high costs for their setup and maintenance. Hence, simulation platforms are usually the tool of choice when testing algorithms and protocols for MMEs. However, existing simulators are not able to fully support detailed evaluation of complex scenarios in MMEs. This is usually due to lack of highly accurate models for the simulated entities and environments. This a ects the results which are obtained by using such simulators. In this paper, we highlight the need to consider the Quality of Simulations (QoSim), in particular aspects such as accuracy, validity, certainty, and acceptability. The focus of this paper is to understand the gap between real-world experiments and simulations for MMEs. The paper presents key QoSim concepts and characteristics for MMEs simulations, describing the aspects of contents of simulation, processing of simulation, and simulation outputs. Eventually, a road map for improving existing simulation environments is proposed.
    corecore