33 research outputs found

    Genomics-assisted breeding for boosting crop improvement in pigeonpea (Cajanus cajan)

    Get PDF
    Pigeonpea is an important pulse crop grown predominantly in the tropical and sub-tropical regions of the world. Although pigeonpea growing area has considerably increased, yield has remained stagnant for the last six decades mainly due to the exposure of the crop to various biotic and abiotic constraints. In addition, low level of genetic variability and limited genomic resources have been serious impediments to pigeonpea crop improvement through modern breeding approaches. In recent years, however, due to the availability of next generation sequencing and high-throughput genotyping technologies, the scenario has changed tremendously. The reduced sequencing costs resulting in the decoding of the pigeonpea genome has led to the development of various genomic resources including molecular markers, transcript sequences and comprehensive genetic maps. Mapping of some important traits including resistance to Fusarium wilt and sterility mosaic disease, fertility restoration, determinacy with other agronomically important traits have paved the way for applying genomics-assisted breeding (GAB) through marker assisted selection as well as genomic selection (GS). This would accelerate the development and improvement of both varieties and hybrids in pigeonpea. Particularly for hybrid breeding programme, mitochondrial genomes of cytoplasmic male sterile (CMS) lines, maintainers and hybrids have been sequenced to identify genes responsible for cytoplasmic male sterility. Furthermore, several diagnostic molecular markers have been developed to assess the purity of commercial hybrids. In summary, pigeonpea has become a genomic resources-rich crop and efforts have already been initiated to integrate these resources in pigeonpea breeding

    Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits

    Get PDF
    Pigeonpea (Cajanus cajan), a tropical grain legume with low input requirements, is expected to continue to have an important role in supplying food and nutritional security in developing countries in Asia, Africa and the tropical Americas. From whole-genome resequencing of 292 Cajanus accessions encompassing breeding lines, landraces and wild species, we characterize genome-wide variation. On the basis of a scan for selective sweeps, we find several genomic regions that were likely targets of domestication and breeding. Using genome-wide association analysis, we identify associations between several candidate genes and agronomically important traits. Candidate genes for these traits in pigeonpea have sequence similarity to genes functionally characterized in other plants for flowering time control, seed development and pod dehiscence. Our findings will allow acceleration of genetic gains for key traits to improve yield and sustainability in pigeonpea

    CAM-GAN: Continual Adaptation Modules for Generative Adversarial Networks

    No full text
    We present a continual learning approach for generative adversarial networks (GANs), by designing and leveraging parameter-efficient feature map transformations. Our approach is based on learning a set of global and task-specific parameters. The global parameters are fixed across tasks whereas the task-specific parameters act as local adapters for each task, and help in efficiently obtaining task-specific feature maps. Moreover, we propose an element-wise addition of residual bias in the transformed feature space, which further helps stabilize GAN training in such settings. Our approach also leverages task similarities based on the Fisher information matrix. Leveraging this knowledge from previous tasks significantly improves the model performance. In addition, the similarity measure also helps reduce the parameter growth in continual adaptation and helps to learn a compact model. In contrast to the recent approaches for continually-learned GANs, the proposed approach provides a memory-efficient way to perform effective continual data generation. Through extensive experiments on challenging and diverse datasets, we show that the feature-map-transformation approach outperforms state-of-the-art methods for continually-learned GANs, with substantially fewer parameters. The proposed method generates high-quality samples that can also improve the generative-replay-based continual learning for discriminative tasks. © 2021 Neural information processing systems foundation. All rights reserved

    Structural basis for uracil DNA glycosylase interaction with uracil: NMR study

    No full text
    Two dimensional (2D) NMR and molecular dynamics simulations have been used to determine the three dimensional (3D) structure of a hairpin DNA, d-CTA-GAGGATCC-TUTT-GGATCCT (22mer; abbreviated as U2-hairpin), which has uracil at the second position from the 5′ end of the tetraloop. The (1)H resonances of this hairpin have been assigned almost completely. NMR restrained molecular dynamics and energy minimization procedures have been used to describe the 3D structure of U2-hairpin. This study establishes that the stem of the hairpin adopts a right-handed B-DNA conformation, while the T(12) and T(15) nucleotides stack upon 3′ and 5′ ends of the stem, respectively. Further, T(14) stacks upon both T(12) and T(15). Though U(13) partially stacks upon T(14), no stacking interaction is observed between U(13) and T(12). All the individual nucleotide bases belonging to the stem and T(12) and T(15) of the loop adopt ‘anti’ conformation with respect to their sugar moiety, while the U(13) and T(14) of the loop are in ‘syn’ conformation. The turning phosphate in the loop is located between T(13) and T(14). This study and a concurrent NMR structural study on yet another hairpin DNA d-CTAGAGGAATAA-TTTU-GGATCCT (22mer; abbreviated as U4-hairpin), with uracil at the fourth position from the 5′ end of the tetraloop throw light upon various interactions which have been reported between Escherichia coli uracil DNA glycosylase (UDG) and uracil containing DNA. The ɛ of T(12) and α, β, γ, ɛ and ζ of U(13) and γ of T(14), which partially influence the local conformation of U(13) in U2-hairpin are all locked in ‘trans’ conformation. Such stretched out backbone conformation in the vicinity of U(13) could be the reason as to why the U2-hairpin is found to be the poor substrate for its interaction with UDG compared to the other substrates in which the uracil is at first, third and fourth positions of the tetraloop from its 5′ end, as reported earlier by Vinay and Varshney. This study shows that UDG actively promotes the flipping of uracil from a stacked conformation and rules out the possibility of UDG recognizing the flipped out uracil bases

    Foliar chemical attributes of the hybrid bred from Eucalyptus citriodora x E. torelliana and its parental taxa, and implications for fungal resistance

    No full text
    <span>One of the important aspects of hybridization is to understand the interaction between hybrid plants and the pests and diseases of the parental taxa. The foliar chemical attributes were compared between the hybrid of </span><em>Eucalyptus citriodora</em><span> and </span><em>E. torelliana</em><span> and its parental taxa. The fungus, </span><em>Cylindrocladium quinqueseptatum</em><span>, to which the hybrid and one parent </span><em>E. torelliana</em><span> have been observed resistant in the field, was used to examine patterns of resistance in relation to foliar constituents found active in labo-ratory bioassays. Concentration of active constituents of the hybrid was higher (monoterpenes- a-pinene, ß-pinene and citronellal, and total phenolics) than either parent or equivalent (ursolic acid) to parent E. torelliana thus suggesting an resistance pattern of hybrid. Beta-pinene, ursolic acid and total phenolics were found to be heritable. The findings suggest a chemical basis for fungal resistance and also indicate that the constituents could be used for screening of the disease resistant progeny in this tree system. </span

    Development of a New Generation of Vectors for Gene Expression, Gene Replacement, and Protein-Protein Interaction Studies in Mycobacteria

    Get PDF
    Escherichia coli-mycobacterium shuttle vectors are important tools for gene expression and gene replacement in mycobacteria. However, most of the currently available vectors are limited in their use because of the lack of extended multiple cloning sites (MCSs) and convenience of appending an epitope tag(s) to the cloned open reading frames (ORFs). Here we report a new series of vectors that allow for the constitutive and regulatable expression of proteins, appended with peptide tag sequences at their N and C termini, respectively. The applicability of these vectors is demonstrated by the constitutive and induced expression of the Mycobacterium tuberculosis pknK gene, coding for protein kinase K, a serine-threonine protein kinase. Furthermore, a suicide plasmid with expanded MCS for creating gene replacements, a plasmid for chromosomal integrations at the commonly used L5 attB site, and a hypoxia-responsive vector, for expression of a gene(s) under hypoxic conditions that mimic latency, have also been created. Additionally, we have created a vector for the coexpression of two proteins controlled by two independent promoters, with each protein being in fusion with a different tag. The shuttle vectors developed in the present study are excellent tools for the analysis of gene function in mycobacteria and are a valuable addition to the existing repertoire of vectors for mycobacterial research

    Antioxidant Properties Mediate Nephroprotective and Hepatoprotective Activity of Essential Oil and Hydro-Alcoholic Extract of the High-Altitude Plant <i>Skimmia anquetilia</i>

    No full text
    There are many high-altitude plants such as Skimmia anquetilia that are unexplored for their possible medicinal values. The present study was conducted to examine the antioxidant activities of Skimmia anquetilia (SA) using in vitro and in vivo models. The SA hydro-alcoholic extracts were investigated using LC-MS for their chemical constituents. The essential oil and hydro-alcoholic extracts of SA were evaluated for pharmacological properties. The antioxidant properties were evaluated using in vitro DPPH, reducing power, cupric reducing antioxidant power, and metal chelating assays. The anti-hemolytic activity was carried out using a human blood sample. The in vivo antioxidant activities were evaluated using CCL4-induced hepatotoxicity and nephrotoxicity assay. The in vivo evaluation included histopathological examination, tissue biochemical evaluation such as the kidney function test, catalase activity, reduced glutathione activity, and lipid peroxidation estimation. The phytochemical investigation showed that the hydro-alcoholic extract contains multiple important active constituents such as L-carnosine, acacetin, linoleic acid, leucylleucyl tyrosine, esculin sesquihydrate, etc., similar to the components of SA essential oil reported in a previous study. The high amount of total phenolic content (TPC) and total flavonoid content (TFC) reflect (p p p p p < 0.001) levels. Tissue-based activities showed a major rise in catalase, reduced glutathione, and reduced lipid peroxidation activities. We conclude from this study that the occurrence of a high quantity of flavonoid and phenolic contents had strong antioxidant properties, leading to hepatoprotective and nephroprotective activity. Further active constituent-specific activities should be evaluated

    Genome-Wide Mapping of Quantitative Trait Loci for Yield-Attributing Traits of Peanut

    No full text
    Peanuts (Arachis hypogaea L.) are important high-protein and oil-containing legume crops adapted to arid to semi-arid regions. The yield and quality of peanuts are complex quantitative traits that show high environmental influence. In this study, a recombinant inbred line population (RIL) (Valencia-C × JUG-03) was developed and phenotyped for nine traits under two environments. A genetic map was constructed using 1323 SNP markers spanning a map distance of 2003.13 cM. Quantitative trait loci (QTL) analysis using this genetic map and phenotyping data identified seventeen QTLs for nine traits. Intriguingly, a total of four QTLs, two each for 100-seed weight (HSW) and shelling percentage (SP), showed major and consistent effects, explaining 10.98% to 14.65% phenotypic variation. The major QTLs for HSW and SP harbored genes associated with seed and pod development such as the seed maturation protein-encoding gene, serine-threonine phosphatase gene, TIR-NBS-LRR gene, protein kinase superfamily gene, bHLH transcription factor-encoding gene, isopentyl transferase gene, ethylene-responsive transcription factor-encoding gene and cytochrome P450 superfamily gene. Additionally, the identification of 76 major epistatic QTLs, with PVE ranging from 11.63% to 72.61%, highlighted their significant role in determining the yield- and quality-related traits. The significant G × E interaction revealed the existence of the major role of the environment in determining the phenotype of yield-attributing traits. Notably, the seed maturation protein-coding gene in the vicinity of major QTLs for HSW can be further investigated to develop a diagnostic marker for HSW in peanut breeding. This study provides understanding of the genetic factor governing peanut traits and valuable insights for future breeding efforts aimed at improving yield and quality
    corecore