5 research outputs found

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Fetal Alcohol Syndrome: Early Olfactory Learning as a Model System to study Neurobehavioral Deficits

    No full text
    The goal of basic research examining the deficits underlying fetal alcohol syndrome is to develop an animal model which allows investigation and assessment of the neural and cognitive impairments resulting from prenatal alcohol exposure. The following review focuses on animal models and their relationship to human deficits following prenatal alcohol exposure. In addition, this review examines a unique, well-established model system which may permit an increased understanding of the role of alcohol on the developing brain and cognitive behavior. Specifically, large metabolic, neurochemical, neuropharmacological, morphological and neurophysiological changes in young rats have been reported as a consequence of early olfactory preference conditioning, a form of learning that normally occurs during both human and rat development. This olfactory odor preference training paradigm can be used to assess changes in learning as well as the neural substrates underlying this learning. Olfactory preference training has been used to examine: 1) learning, as demonstrated by a behavioral preference for an odor previously paired with stimulation which mimics maternal care; 2) metabolism, by measuring 2-deoxyglucose uptake and distribution in response to the trained odor; 3) neurotransmitter levels, by using in vivo microdialysis, to examine changes in neurotransmitter levels in the olfactory bulb in response to a trained odor. Using in vivo microdialysis enables measurement of both baseline responsiveness of alcohol-exposed pups as well as learned responses at several different developmental ages. The established neural features of this olfactory model include an increase in behavioral preference for a trained odor, increases in 2-DG uptake in specific foci within the olfactory bulb in response to the odor, and increases in dopamine in response to olfactory preference training stimuli, as well as conditioned increases in norepinephrine following olfactory preference training. Using these known behavioral, metabolic and neurochemical indices in control pups allows identification of some of the neurotransmitter systems involved in deficits and the neurobiological basis for impairments induced by prenatal alcohol exposure
    corecore