2 research outputs found

    First monitoring of cyanobacteria and cyanotoxins in freshwater from fish farms in RondĂŽnia state, Brazil

    No full text
    The main aimed of this study was to evaluate the physicochemical parameters, abundance and density of cyanobacteria, determine their blooms and the ecotoxicological risk of their cyanotoxins in fish ponds water. This study was conducted out in 20 fish farms in RondĂŽnia state (Brazilian Amazon), samplings were carried out in the rainy and dry seasons. The experiment was developed in a completely randomized factorial design 20 × 3 x 3 (20 fish farms, 3 ponds and 3 replications). Regarding the composition of qualitative samples, horizontal and vertical hauls were carried out on the water surface, quantitative samples was obtained using a plankton net (50 Όm mesh opening). Meanwhile, with the use of a multiparametric probe, physicochemical analyzes in fish ponds water were carried out. Furthermore, the cyanobacteria found were classified taxonomically and its blooms were recorded. Finally, blood was collected from 60 Colossoma macropomum. Concerning the higher averages in the rainy season 6.13 mg L⁻1 of dissolved oxygen, 40.02 cm of transparency, 0.35 NO31⁻ of nitrate, 0.15 NO21⁻ of nitrite, 44.55 mg L⁻1 CaCO3 of alkalinity and 50.10 mg L⁻1 CaCO3 of hardness, while higher averages of pH, phosphate and phosphorus were found in the dry season. A total of 15 families and 29 species of cyanobacteria were identified in the different seasons. The families that showed the highest densities (rainy and dry seasons) were Microcystaceae (356 and 760 cells mL⁻1), Leptolyngbyaceae (126 and 287 cells mL⁻1) and Microcoleaceae (111 and 405 cells mL⁻1). The species that showed the highest densities were Microcystis aeruginosa (356 and 697 cells mL⁻1), Planktolyngbya limnetica (98 and 257 cells mL⁻1) and Planktothrix sp. (111 and 239 cells mL⁻1). There were significant Pearson's correlations (r > 0.85; p QL). Abundance and density of cyanobacteria and their blooms and cyanotoxins can be used as bioindicators of eutrophication and/or water quality and ecotoxicological risk in fish ponds

    Monitoring of Mycotoxigenic Fungi in Fish Farm Water and Fumonisins in Feeds for Farmed <i>Colossoma macropomum</i>

    No full text
    This study aimed to evaluate the occurrence of mycotoxigenic fungi in fish farm water and mycotoxins in feeds for farmed tambaqui (Colossoma macropomum). A total of 40 samples of freshwater from fish farms and 16 samples of feed were collected and analyzed for microbiology. A total of five species of free-living fungi were identified in fish farms: Aspergillus fumigatus, Penicillium citrinum, P. implicatum, Fusarium oxysporum and Alternaria alternata. These fungi species were counted in water samples at 35.14 CFU mL−1 and 24.69 CFU mL−1 in the dry seasons. In all fish farms, there was a higher abundance of fungi species in the rainy season. During visits to the fish farmers, it was possible to verify poor feed storage conditions. Concerning mutations in blood cells, in tambaqui (C. macropomum), a total of 159 anomalies were found, and in Leptodactylus petersii, 299 anomalies were found, with higher incidences in conditions above 1.0 CFU mL−1 in log10(x+1) fungi and in the rainy season. The occurrence of mycotoxicological contamination was confirmed in 81.25% of the analyzed samples. The quantified mycotoxin was Fumonisins B1 + B2 (375 to 1418 ÎŒg kg−1). Pearson’s correlation analysis showed a significant positive correlation between Fumonisins and feed samples (r = 0.83). There was also a significant positive correlation between the abundance of fungi in water and the quantification of Fumonisins (r = 0.79). Based on the results obtained, it can be concluded that free-living fungi can be used as bioindicators of water quality in fish farms. Consequently, the lack of good management practices caused microbiological contamination of the aquatic environment
    corecore