630 research outputs found

    Antidiabetic Actions of Endogenous and Exogenous GLP-1 in Type 1 Diabetic Patients With and Without Residual β-Cell Function

    Get PDF
    OBJECTIVE—To investigate the effect of exogenous as well as endogenous glucagon-like peptide 1 (GLP-1) on postprandial glucose excursions and to characterize the secretion of incretin hormones in type 1 diabetic patients with and without residual b-cell function. RESEARCH DESIGN AND METHODS—Eight type 1 diabetic patients with (T1D+), eight without (T1D2) residual b-cell func-tion, and eight healthy matched control subjects were studied during a mixed meal with concomitant infusion of GLP-1 (1.2 pmol/kg/min), saline, or exendin 9-39 (300 pmol/kg/min). Before the meal, half dose of usual fast-acting insulin was injected. Plasma glucose (PG), glucagon, C-peptide, total GLP-1, intact glucose-dependent insulinotropic polypeptide (GIP), free fatty acids, triglycerides, and gastric emptying rate (GE) by plasma acetaminophen were measured

    Retrospective Analysis on the Efficacy, Safety and Treatment Failure Group of Sitagliptin for Mean 10-Month Duration

    Get PDF
    BackgroundTo investigate the clinical results of sitagliptin (SITA) and the characteristics of the treatment failure group or of low responders to SITA.MethodsA retrospective study of type 2 diabetic patients reviewed 99 cases, including 12 treatment failure cases, who stopped SITA because of worsening patients' condition, and 87 cases, who continued treatment over five visits (total 9.9±10.1 months) after receiving the prescription of SITA from December 2008 to June 2009. Subjects were classified as five groups administered SITA as an initial combination with metformin (MET), add-on to metformin or sulfonylurea, and switching from sulfonylurea or thiazolidinedione. The changes in HbA1c level from the first to last visit (ΔHbA1c) in treatment maintenance group were subanalyzed.ResultsThe HbA1c level was significantly reduced in four groups, including initial coadministration of SITA with metformin (ΔHbA1c=-1.1%, P<0.001), add-on to MET (ΔHbA1c=-0.6%, P=0.017), add-on to sulfonylurea (ΔHbA1c=-0.5%, P<0.001), and switching from thiazolidinedione (ΔHbA1c=-0.3%, P=0.013). SITA was noninferior to sulfonlyurea (ΔHbA1c=-0.2%, P=0.63). There was no significant adverse effect. The treatment failure group had a longer diabeties duration (P=0.008), higher HbA1c (P=0.001) and fasting plasma glucose (P=0.003) compared to the maintenance group. Subanalysis on the tertiles of ΔHbA1c showed that low-response to SITA (tertile 1) was associated with a longer diabetes duration (P=0.009) and lower HbA1c (P<0.001).ConclusionSITA was effective and safe for use in Korean type 2 diabetic patients. However, its clinical responses and long-term benefit-harm profile is yet to be established

    Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes

    Get PDF
    BackgroundEstablishing cardiovascular safety of new therapies for type 2 diabetes is important. Safety data are available for the subcutaneous form of the glucagon-like peptide-1 receptor agonist semaglutide but are needed for oral semaglutide.MethodsWe assessed cardiovascular outcomes of once-daily oral semaglutide in an event-driven, randomized, double-blind, placebo-controlled trial involving patients at high cardiovascular risk (age of &gt;= 50 years with established cardiovascular or chronic kidney disease, or age of &gt;= 60 years with cardiovascular risk factors only). The primary outcome in a time-to-event analysis was the first occurrence of a major adverse cardiovascular event (death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke). The trial was designed to rule out 80% excess cardiovascular risk as compared with placebo (noninferiority margin of 1.8 for the upper boundary of the 95% confidence interval for the hazard ratio for the primary outcome).ResultsA total of 3183 patients were randomly assigned to receive oral semaglutide or placebo. The mean age of the patients was 66 years; 2695 patients (84.7%) were 50 years of age or older and had cardiovascular or chronic kidney disease. The median time in the trial was 15.9 months. Major adverse cardiovascular events occurred in 61 of 1591 patients (3.8%) in the oral semaglutide group and 76 of 1592 (4.8%) in the placebo group (hazard ratio, 0.79; 95% confidence interval [CI], 0.57 to 1.11; P&lt;0.001 for noninferiority). Results for components of the primary outcome were as follows: death from cardiovascular causes, 15 of 1591 patients (0.9%) in the oral semaglutide group and 30 of 1592 (1.9%) in the placebo group (hazard ratio, 0.49; 95% CI, 0.27 to 0.92); nonfatal myocardial infarction, 37 of 1591 patients (2.3%) and 31 of 1592 (1.9%), respectively (hazard ratio, 1.18; 95% CI, 0.73 to 1.90); and nonfatal stroke, 12 of 1591 patients (0.8%) and 16 of 1592 (1.0%), respectively (hazard ratio, 0.74; 95% CI, 0.35 to 1.57). Death from any cause occurred in 23 of 1591 patients (1.4%) in the oral semaglutide group and 45 of 1592 (2.8%) in the placebo group (hazard ratio, 0.51; 95% CI, 0.31 to 0.84). Gastrointestinal adverse events leading to discontinuation of oral semaglutide or placebo were more common with oral semaglutide.ConclusionsIn this trial involving patients with type 2 diabetes, the cardiovascular risk profile of oral semaglutide was not inferior to that of placebo

    Cardioprotective effects of lixisenatide in rat myocardial ischemia-reperfusion injury studies

    Get PDF
    BACKGROUND: Lixisenatide is a glucagon-like peptide-1 analog which stimulates insulin secretion and inhibits glucagon secretion and gastric emptying. We investigated cardioprotective effects of lixisenatide in rodent models reflecting the clinical situation. METHODS: The acute cardiac effects of lixisenatide were investigated in isolated rat hearts subjected to brief ischemia and reperfusion. Effects of chronic treatment with lixisenatide on cardiac function were assessed in a modified rat heart failure model after only transient coronary occlusion followed by long-term reperfusion. Freshly isolated cardiomyocytes were used to investigate cell-type specific mechanisms of lixisenatide action. RESULTS: In the acute setting of ischemia-reperfusion, lixisenatide reduced the infarct-size/area at risk by 36% ratio without changes on coronary flow, left-ventricular pressure and heart rate. Treatment with lixisenatide for 10 weeks, starting after cardiac ischemia and reperfusion, improved left ventricular end-diastolic pressure and relaxation time and prevented lung congestion in comparison to placebo. No anti-fibrotic effect was observed. Gene expression analysis revealed a change in remodeling genes comparable to the ACE inhibitor ramipril. In isolated cardiomyocytes lixisenatide reduced apoptosis and increased fractional shortening. Glucagon-like peptide-1 receptor (GLP1R) mRNA expression could not be detected in rat heart samples or isolated cardiomyocytes. Surprisingly, cardiomyocytes isolated from GLP-1 receptor knockout mice still responded to lixisenatide. CONCLUSIONS: In rodent models, lixisenatide reduced in an acute setting infarct-size and improved cardiac function when administered long-term after ischemia-reperfusion injury. GLP-1 receptor independent mechanisms contribute to the described cardioprotective effect of lixisenatide. Based in part on these preclinical findings patients with cardiac dysfunction are currently being recruited for a randomized, double-blind, placebo-controlled, multicenter study with lixisenatide. TRIAL REGISTRATION: (ELIXA, ClinicalTrials.gov Identifier: NCT01147250
    corecore