7 research outputs found

    Birt–Hogg–Dubé syndrome: a case report and a review of the literature

    No full text
    Background: Birt-Hogg-Dubé syndrome (BHDS) is a rare autosomal dominant inherited syndrome caused by mutations in the folliculin coding gene (FLCN). The clinical manifestations of the syndrome involve the skin, lungs, and kidneys. Because of the rarity of the syndrome, guidelines for diagnosis and management of the patients with BHDS are lacking. Objective: To present a case story and a review of the literature on BHDS in order to give an update on genetics, clinical manifestations, diagnosis, treatment, prognosis and follow-up strategies. Design: Literature review and case story. Results: A PubMed and Embase search identified 330 papers. BHDS is characterized by small benign tumors in the skin, spontaneous pneumothoraces caused by cysts in the lungs and a seven-fold increased risk of renal cancer. A case story of a young female patient presenting with pneumothorax and a family history of recurrent pneumothoraces in many relatives illustrates how the history and the diagnostic work up resulted in a diagnosis of BHDS. Conclusion: BHDS is a rare inherited disorder. In patients with spontaneous pneumothorax or cystic lung disease without any obvious explanation, BHDS should be considered. Concomitant skin manifestations, a family history of familiar pneumothorax, renal cancers and skin manifestations supports the suspicion of BHDS. Early diagnosis is important in order to subject patients to systematic screening for renal cancers. A radiological surveillance strategy for renal cancer is proposed

    DNA damage-inducible SUMOylation of HERC2 promotes RNF8 binding via a novel SUMO-binding Zinc finger

    Get PDF
    Nonproteolytic ubiquitylation of chromatin surrounding deoxyribonucleic acid (DNA) double-strand breaks (DSBs) by the RNF8/RNF168/HERC2 ubiquitin ligases facilitates restoration of genome integrity by licensing chromatin to concentrate genome caretaker proteins near the lesions. In parallel, SUMOylation of so-far elusive upstream DSB regulators is also required for execution of this ubiquitin-dependent chromatin response. We show that HERC2 and RNF168 are novel DNA damage–dependent SUMOylation targets in human cells. In response to DSBs, both HERC2 and RNF168 were specifically modified with SUMO1 at DSB sites in a manner dependent on the SUMO E3 ligase PIAS4. SUMOylation of HERC2 was required for its DSB-induced association with RNF8 and for stabilizing the RNF8–Ubc13 complex. We also demonstrate that the ZZ Zinc finger in HERC2 defined a novel SUMO-specific binding module, which together with its concomitant SUMOylation and T4827 phosphorylation promoted binding to RNF8. Our findings provide novel insight into the regulatory complexity of how ubiquitylation and SUMOylation cooperate to orchestrate protein interactions with DSB repair foci

    p38- and MK2-dependent signalling promotes stress-induced centriolar satellite remodelling via 14-3-3-dependent sequestration of CEP131/AZI1

    No full text
    Centriolar satellites (CS) are small granular structures that cluster in the vicinity of centrosomes. CS are highly susceptible to stress stimuli, triggering abrupt displacement of key CS factors. Here we discover a linear p38-MK2-14-3-3 signalling pathway that specifically targets CEP131 to trigger CS remodelling after cell stress. We identify CEP131 as a substrate of the p38 effector kinase MK2 and pinpoint S47 and S78 as critical MK2 phosphorylation sites in CEP131. Ultraviolet-induced phosphorylation of these residues generates direct binding sites for 14-3-3 proteins, which sequester CEP131 in the cytoplasm to block formation of new CS, thereby leading to rapid depletion of these structures. Mutating S47 and S78 in CEP131 is sufficient to abolish stress-induced CS reorganization, demonstrating that CEP131 is the key regulatory target of MK2 and 14-3-3 in these structures. Our findings reveal the molecular mechanism underlying dynamic CS remodelling to modulate centrosome functions on cell stress

    A new cellular stress response that triggers centriolar satellite reorganization and ciliogenesis

    No full text
    Centriolar satellites are small, granular structures that cluster around centrosomes, but whose biological function and regulation are poorly understood. We show that centriolar satellites undergo striking reorganization in response to cellular stresses such as UV radiation, heat shock, and transcription blocks, invoking acute and selective displacement of the factors AZI1/CEP131, PCM1, and CEP290 from this compartment triggered by activation of the stress-responsive kinase p38/MAPK14. We demonstrate that the E3 ubiquitin ligase MIB1 is a new component of centriolar satellites, which interacts with and ubiquitylates AZI1 and PCM1 and suppresses primary cilium formation. In response to cell stress, MIB1 is abruptly inactivated in a p38-independent manner, leading to loss of AZI1, PCM1, and CEP290 ubiquitylation and concomitant stimulation of ciliogenesis, even in proliferating cells. Collectively, our findings uncover a new two-pronged signalling response, which by coupling p38-dependent phosphorylation with MIB1-catalysed ubiquitylation of ciliogenesis-promoting factors plays an important role in controlling centriolar satellite status and key centrosomal functions in a cell stress-regulated manner
    corecore