416 research outputs found

    A periodic pattern of SNPs in the human genome

    Get PDF
    By surveying all validated SNPs in the human genome we have found that SNPs positioned 1, 2, 4, 6 or 8 bp apart are more frequent than SNPs 3, 5, 7 or 9 bp apart. This holds even when we correct for nucleotide frequencies and site dependencies in nucleotide usage in the genome. The observed pattern is not restricted to any of the genomic regions that might give sequencing or alignment errors; i.e. transposable elements (SINE, LINE and LTR), tandem repeats and large duplicated regions. However we can define periodic DNA, which virtually capture the entire pattern. Periodic DNA is defined as small DNA sequences (16.9 bp average length) with a high degree of periodicity in nucleotide usage. Periodic DNA is widely distributed in the genome, underrepresented in exons, widespread in transcripts and slightly overrepresented in tandem repeats. Furthermore periodic DNA has a 1.8 times higher SNP density than the rest of the genome.
A possible biological explanation of these observations is that during DNA replication small fragments of (periodic) DNA is copied to nearby positions, substituting the original sequence. If the copied fragment differs from the original sequence a new SNP is created. 
In conclusion these observations suggest that not all SNPs in the human genome are created by independent single nucleotide mutations.
&#xa

    Fast and non-invasive PCR sexing of primates: apes, Old World monkeys, New World monkeys and Strepsirrhines

    Get PDF
    BACKGROUND: One of the key tools for determining the social structure of wild and endangered primates is the ability to sex DNA from small amounts of non-invasive samples that are likely to include highly degraded DNA. Traditional markers for molecular sex determination of primates are developed on the basis of the human sequence and are often non-functional in distantly related primate species. Hence, it is highly desirable to develop markers that simultaneously detect Y- and X-chromosome specific sequences and also work across many species. RESULTS: A novel method for sex identification in primates is described using a triple primer PCR reaction and agarose gel electrophoresis of the sex-chromosomal isoforms of the ubiquitously transcribed tetratricopeptide repeat protein gene (UTX/UTY). By comparing genomic data from several mammals we identified the UTX/UTY locus as the best candidate for a universal primate sexing marker. Using data from several species we identified a XY-conserved region, a Y conserved region and an X conserved region. This enabled the design of a triple primer PCR setup that amplifies X and Y products of different length in a single PCR reaction. CONCLUSION: This simple PCR amplification of X and Y fragments is useful for sexing DNA samples from all species of primates. Furthermore, since the amplified fragments are very short the method can be applied to fragmented DNA extracted from non-invasive samples

    Short Tandem Repeats in Human Exons: A Target for Disease Mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years it has been demonstrated that structural variations, such as indels (insertions and deletions), are common throughout the genome, but the implications of structural variations are still not clearly understood. Long tandem repeats (e.g. microsatellites or simple repeats) are known to be hypermutable (indel-rich), but are rare in exons and only occasionally associated with diseases. Here we focus on short (imperfect) tandem repeats (STRs) which fall below the radar of conventional tandem repeat detection, and investigate whether STRs are targets for disease-related mutations in human exons. In particular, we test whether they share the hypermutability of the longer tandem repeats and whether disease-related genes have a higher STR content than non-disease-related genes.</p> <p>Results</p> <p>We show that validated human indels are extremely common in STR regions compared to non-STR regions. In contrast to longer tandem repeats, our definition of STRs found them to be present in exons of most known human genes (92%), 99% of all STR sequences in exons are shorter than 33 base pairs and 62% of all STR sequences are imperfect repeats. We also demonstrate that STRs are significantly overrepresented in disease-related genes in both human and mouse. These results are preserved when we limit the analysis to STRs outside known longer tandem repeats.</p> <p>Conclusion</p> <p>Based on our findings we conclude that STRs represent hypermutable regions in the human genome that are linked to human disease. In addition, STRs constitute an obvious target when screening for rare mutations, because of the relatively low amount of STRs in exons (1,973,844 bp) and the limited length of STR regions.</p

    Introgression of mountain hare (Lepus timidus) mitochondrial DNA into wild brown hares (Lepus europaeus) in Denmark

    Get PDF
    BACKGROUND: In Europe the mountain hare (Lepus timidus) exists in Great Britain, Norway, Sweden, Finland, parts of the Alps and in Eastern Europe, but not in Denmark. Interspecific hybridization has been demonstrated between native Swedish mountain hares and introduced brown hares (Lepus europaeus). During the data collection in a study concerning Danish brown hares we identified 16 hares with a single very divergent haplotype. RESULTS: Phylogenetic analysis shows that the divergent Danish haplotype is most closely related to the Swedish mountain hare. The frequency of Lepus timidus mtDNA haplotype in the Eastern Danish hare populations is estimated to 6%. CONCLUSION: In contrast to what is known, the Danish hare populations are not pure L. europaeus populations but include introgressed brown hares with Swedish L. timidus mtDNA. The most probable explanation of this is natural migration or translocation of introgressed brown hares from Sweden. The impurity of hare populations has implications for conservation and population genetics

    Identification of endogenous retroviral reading frames in the human genome

    Get PDF
    BACKGROUND: Human endogenous retroviruses (HERVs) comprise a large class of repetitive retroelements. Most HERVs are ancient and invaded our genome at least 25 million years ago, except for the evolutionary young HERV-K group. The far majority of the encoded genes are degenerate due to mutational decay and only a few non-HERV-K loci are known to retain intact reading frames. Additional intact HERV genes may exist, since retroviral reading frames have not been systematically annotated on a genome-wide scale. RESULTS: By clustering of hits from multiple BLAST searches using known retroviral sequences we have mapped 1.1% of the human genome as retrovirus related. The coding potential of all identified HERV regions were analyzed by annotating viral open reading frames (vORFs) and we report 7836 loci as verified by protein homology criteria. Among 59 intact or almost-intact viral polyproteins scattered around the human genome we have found 29 envelope genes including two novel gammaretroviral types. One encodes a protein similar to a recently discovered zebrafish retrovirus (ZFERV) while another shows partial, C-terminal, homology to Syncytin (HERV-W/FRD). CONCLUSIONS: This compilation of HERV sequences and their coding potential provide a useful tool for pursuing functional analysis such as RNA expression profiling and effects of viral proteins, which may, in turn, reveal a role for HERVs in human health and disease. All data are publicly available through a database at

    Skeletal muscle IL-6 regulates muscle substrate utilization and adipose tissue metabolism during recovery from an acute bout of exercise

    Get PDF
    An acute bout of exercise imposes a major challenge on whole-body metabolism and metabolic adjustments are needed in multiple tissues during recovery to reestablish metabolic homeostasis. It is currently unresolved how this regulation is orchestrated between tissues. This study was undertaken to clarify the role of skeletal muscle derived interleukin 6 (IL-6) in the coordination of the metabolic responses during recovery from acute exercise. Skeletal muscle specific IL-6 knockout (IL-6 MKO) and littermate Control mice were rested or ran on a treadmill for 2h. Plasma, skeletal muscle, liver and adipose tissue were obtained after 6 and 10h of recovery. Non-exercised IL-6 MKO mice had higher plasma lactate and lower plasma non-esterified fatty acids than Controls. The activity of pyruvate dehydrogenase in the active form was, in skeletal muscle, higher in IL-6 MKO mice than Controls in non-exercised mice and 6h after exercise. IL-6 MKO mice had lower glucose transporter 4 protein content in inguinal adipose tissue (WAT) than Control in non-exercised mice and 10h after treadmill running. Epididymal WAT hormone sensitive lipase phosphorylation and inguinal WAT mitogen activated kinase P38 phosphorylation were higher in IL-6 MKO than Control mice 6h after exercise. These findings indicate that skeletal muscle IL-6 may play an important role in the regulation of substrate utilization in skeletal muscle, basal and exercise-induced adaptations in adipose tissue glucose uptake and lipolysis during recovery from exercise. Together this indicates that skeletal muscle IL-6 contributes to reestablishing metabolic homeostasis during recovery from exercise by regulating WAT and skeletal muscle metabolism

    Transcriptome Analysis of Long Non-coding RNAs and Genes Encoding Paraspeckle Proteins During Human Ovarian Follicle Development

    Get PDF
    Emerging evidence indicated that many long non-coding (lnc)RNAs function in multiple biological processes and dysregulation of their expression can cause diseases. Most regulatory lncRNAs interact with biological macromolecules such as DNA, RNA, and protein. LncRNAs regulate gene expression through epigenetic modification, transcription, and posttranscription, through DNA methylation, histone modification, and chromatin remodeling. Interestingly, differential lncRNA expression profiles in human oocytes and cumulus cells was recently assessed, however, lncRNAs in human follicle development has not previously been described. In this study, transcriptome dynamics in human primordial, primary and small antral follicles were interrogated and revealed information of lncRNA genes. It is known that some lncRNAs form a complex with paraspeckle proteins and therefore, we extended our transcriptional analysis to include genes encoding paraspeckle proteins. Primordial, primary follicles and small antral follicles was isolated using laser capture micro-dissection from ovarian tissue donated by three women having ovarian tissue cryopreserved before chemotherapy. After RN sequencing, a bioinformatic class comparison was performed and primordial, primary and small antral follicles were found to express several lncRNA and genes encoding paraspeckle proteins. Of particular interest, we detected the lncRNAs XIST, NEAT1, NEAT2 (MALAT1), and GAS5. Moreover, we noted a high expression of FUS, TAF15, and EWS components of the paraspeckles, proteins that belong to the FET (previously TET) family of RNA-binding proteins and are implicated in central cellular processes such as regulation of gene expression, maintenance of genomic integrity, and mRNA/microRNA processing. We also interrogated the intra-ovarian localization of the FUS, TAF15, and EWS proteins using immunofluorescence. The presence and the dynamics of genes that encode lncRNA and paraspeckle proteins may suggest that these may mediate functions in the cyclic recruitment and differentiation of human follicles and could participate in biological processes known to be associated with lncRNAs and paraspeckle proteins, such as gene expression control, scaffold formation and epigenetic control through human follicle development. This comprehensive transcriptome analysis of lncRNAs and genes encoding paraspeckle proteins expressed in human follicles could potentially provide biomarkers of oocyte quality for the development of non-invasive tests to identify embryos with high developmental potential

    Statistical modelling investigation of MALDI-MSI-Based approaches for document examination.

    Get PDF
    Questioned document examination aims to assess if a document of interest has been forged. Spectroscopy-based methods are the gold standard for this type of evaluation. In the past 15 years, Matrix-Assisted Laser Desorption Ionisation-Mass Spectrometry Imaging (MALDI-MSI) has emerged as a powerful analytical tool for the examination of finger marks, blood, and hair. Therefore, this study intended to explore the possibility of expanding the forensic versatility of this technique through its application to questioned documents. Specifically, a combination of MALDI-MSI and chemometric approaches was investigated for the differentiation of seven gel pens, through their ink composition, over 44 days to assess: (i) the ability of MALDI MSI to detect and image ink chemical composition and (ii) the robustness of the combined approach for the classification of different pens over time. The training data were modelled using elastic net logistic regression to obtain probabilities for each pen class and assess the time effect on the ink. This strategy led the classification model to yield predictions matching the ground truth. This model was validated using signatures generated by different pens (blind to the analyst), yielding a 100% accuracy in machine learning cross-validation. These data indicate that the coupling of MALDI-MSI with machine learning was robust for ink discrimination within the dataset and conditions investigated, which justifies further studies, including that of confounders such as paper brands and environmental factors
    corecore