22 research outputs found
Transmission of near-resonant light through a dense slab of cold atoms
The optical properties of randomly positioned, resonant scatterers is a
fundamentally difficult problem to address across a wide range of densities and
geometries. We investigate it experimentally using a dense cloud of rubidium
atoms probed with near-resonant light. The atoms are confined in a slab
geometry with a sub-wavelength thickness. We probe the optical response of the
cloud as its density and hence the strength of the light-induced dipole-dipole
interactions are increased. We also describe a theoretical study based on a
coupled dipole simulation which is further complemented by a perturbative
approach. This model reproduces qualitatively the experimental observation of a
saturation of the optical depth, a broadening of the transition and a blue
shift of the resonance
Afonso de Albuquerque and the consumption of material culture in the Indian Ocean : 1506-1515
Nesta dissertação pretendem-se identificar as práticas de Afonso de
Albuquerque enquanto consumidor de arte e avaliar até que ponto são paradigmáticas
do seu tempo ou constituem um marco taxativo na periodização do consumo de arte. O
governador (entre 1509 e 1515, mas na Ásia desde 1506) do que viria a ser o Estado da
Índia teve um papel fundamental enquanto receptor e distribuidor de presentes
diplomáticos, mas são também inteligíveis nos textos coevos apontamentos sobre as
suas estratégias pessoais de usufruto e exibição de objectos artísticos. O texto explora
como eram tomadas as decisões quanto à cultura material num momento de trocas
intensas e sem precedentes com a Ásia. Argumenta-se que as práticas alteraram-se
significativamente durante o período de governo de Albuquerque, motivadas pela sua
(rápida) apreensão da geopolítica asiática. A dissertação divide-se em duas partes.
Na primeira produz-se uma leitura historiográfica do interesse português na Ásia
durante os anos finais do século XV e os primeiros do XVI. Esta síntese serve para
mapear a conjuntura em que as situações descritas no segundo capítulo tiveram lugar.
O segundo capítulo, mais extenso do que o precedente, produz uma leitura
crítica das estratégias de consumo (aquisição, manutenção, exibição, e transferência de
posse) de objectos por Afonso de Albuquerque. Divide-se em três tendências
fundamentais que, de acordo com o que é proposto, formataram o interesse português
por objectos asiáticos: os saques, as ofertas diplomáticas, e o consumo de corte. Na
parte final do capítulo esboça-se uma proposta de interpretação de como foram
recebidos em Portugal os objectos artísticos enviados, com diversos propósitos, por
Afonso de Albuquerque.This thesis attempts to understand the practices of material culture consumption
performed by Afonso de Albuquerque, and to assess if they served as a paradigm or a
new tendency in sixteenth-century art consumption. The governor (from 1509-1515, but
in Asia since 1506) of the future ‘Estado da Índia’ had a central role as a receiver and
distributor of diplomatic gifts, but contemporary documents hint at a personal strategy
in the use of art. This text explores how decisions were made in a moment of
unprecedented and intensive material culture exchange with Asia. It will try to argue
that practices changed in the course of Albuquerque’s government, following his (fast)
apprehension of Asian geopolitics. This thesis is divided into two chapters.
The first consists in a historiographical reading of the Portuguese interest in Asia
during the late 15th and early 16th centuries. This summary serves as a basis to
understand the stage where the episodes described in chapter II took place.
Chapter II, far more extensive than the former, consists in a critical reading of
the consumption strategies (acquisition, maintenance, display, and transfer) used by
Afonso de Albuquerque. It is divided into three fundamental tendencies which, it is
argued, shaped the Portuguese interest for Asiatica: looting, diplomatic gift-exchange,
and courtly consumption. The final part of the chapter provides some suggestions on
how the material culture sent by Albuquerque with various intents was received in
Portugal
Efficiently improving the performance of noisy quantum computers
Using near-term quantum computers to achieve a quantum advantage requires efficient strategies to improve the performance of the noisy quantum devices presently available. We develop and experimentally validate two efficient error mitigation protocols named “Noiseless Output Extrapolation” and “Pauli Error Cancellation” that can drastically enhance the performance of quantum circuits composed of noisy cycles of gates. By combining popular mitigation strategies such as probabilistic error cancellation and noise amplification with efficient noise reconstruction methods, our protocols can mitigate a wide range of noise processes that do not satisfy the assumptions underlying existing mitigation protocols, including non-local and gate-dependent processes. We test our protocols on a four-qubit superconducting processor at the Advanced Quantum Testbed. We observe significant improvements in the performance of both structured and random circuits, with up to 86% improvement in variation distance over the unmitigated outputs. Our experiments demonstrate the effectiveness of our protocols, as well as their practicality for current hardware platforms
Randomized compiling for scalable quantum computing on a noisy superconducting quantum processor
The successful implementation of algorithms on quantum processors relies on
the accurate control of quantum bits (qubits) to perform logic gate operations.
In this era of noisy intermediate-scale quantum (NISQ) computing, systematic
miscalibrations, drift, and crosstalk in the control of qubits can lead to a
coherent form of error which has no classical analog. Coherent errors severely
limit the performance of quantum algorithms in an unpredictable manner, and
mitigating their impact is necessary for realizing reliable quantum
computations. Moreover, the average error rates measured by randomized
benchmarking and related protocols are not sensitive to the full impact of
coherent errors, and therefore do not reliably predict the global performance
of quantum algorithms, leaving us unprepared to validate the accuracy of future
large-scale quantum computations. Randomized compiling is a protocol designed
to overcome these performance limitations by converting coherent errors into
stochastic noise, dramatically reducing unpredictable errors in quantum
algorithms and enabling accurate predictions of algorithmic performance from
error rates measured via cycle benchmarking. In this work, we demonstrate
significant performance gains under randomized compiling for the four-qubit
quantum Fourier transform algorithm and for random circuits of variable depth
on a superconducting quantum processor. Additionally, we accurately predict
algorithm performance using experimentally-measured error rates. Our results
demonstrate that randomized compiling can be utilized to maximally-leverage and
predict the capabilities of modern-day noisy quantum processors, paving the way
forward for scalable quantum computing
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
Fluides quantiques dans des boîtes : son et lumière dans un gaz de Bose bidimensionnel
Les atomes ultrafroids constituent depuis une vingtaine d’années un domaine fructueux pour l’étude de la physique à N corps. Cependant l’inhomogénéité des nuages atomiques, induite par les méthodes de piégeage utilisées habituellement, constitue une limite pour les études portant sur de grandes échelles de longueur. Nous reportons ici la mise en place d’un nouveau dispositif expérimental, combinant un potentiel modulable à bords raides et fond plat dans le plan atomique, avec un confinement versatile dans la troisième direction. Nous nous intéressons à différentes excitations du système, premièrement des degrés de liberté internes des atomes via leur interaction avec la lumière, puis deuxièmement de leur mouvement collectif avec la propagation de phonons. La répartition des atomes dans un plan est particulièrement adaptée aux études de diffusion de la lumière. Elle permet en effet de sonder de fortes densités atomiques, entraînant de fortes interactions dipôle-dipôle induites, tout en gardant un signal transmis suffisant pour effectuer des mesures. Nous avons mesuré la déviation au comportement d’un atome isolé pour de la lumière proche de résonance lorsque la densité atomique est modifiée. Nous avons également étudié la diffusion de photons dans un disque d’atomes en injectant de la lumière seulement au centre du disque. Nous nous sommes ensuite intéressés aux excitations collectives du gaz. Nous avons mesuré la vitesse du son dans le milieu, qui est liée à la fraction superfluide du système, et comparé nos résultats aux prédictions d’un modèle hydrodynamique à deux fluides. En utilisant une géométrie adaptée, nous avons en outre étudié la dynamique de retour à l’équilibre d’un système isolé, en imageant la phase du condensat de Bose-Einstein résultant de la fusion de jusqu’à douze condensats.Ultracold atoms have proven to be a powerful platform for studying many-body physics. However the inhomegeneity of atomic clouds induced by potentials commonly used to trap the atoms constitutes a limitation for studies probing large length scales. Here we present the implementation of a new versatile setup to study two-dimensional Bose gases, combining a tunable in-plane box potential with a strong and efficient confinement along the third direction. We study different excitations of the system, either of internal degrees of freedom of the atoms with light scattering, or of their collective motion with phonon propagation. The slab geometry is particularly well suited for light scattering studies. It allows one to probe high atomic densities, leading to strong induced dipole-dipole interactions, while keeping a good enough light transmission for measurements. We monitor the deviation from the single atom behavior for near resonant light by varying the atomic density. We additionally monitor the spreading of photons inside the slab by injecting light only at the center of a disk of atoms. We also investigate collective excitations of the atomic gas. We measure the speed of sound which is linked to the superfluid density of the cloud and compare our results to a two-fluid hydrodynamic model predictions. Using a relevant geometry, we additionally study how an isolated system goes back to equilibrium. This is done by imaging the phase of the resulting Bose-Einstein condensate (BEC) after merging up to twelve BECs
Fluides quantiques dans des boîtes : son et lumière dans un gaz de Bose bidimensionnel
Ultracold atoms have proven to be a powerful platform for studying many-body physics. However the inhomegeneity of atomic clouds induced by potentials commonly used to trap the atoms constitutes a limitation for studies probing large length scales. Here we present the implementation of a new versatile setup to study two-dimensional Bose gases, combining a tunable in-plane box potential with a strong and efficient confinement along the third direction. We study different excitations of the system, either of internal degrees of freedom of the atoms with light scattering, or of their collective motion with phonon propagation. The slab geometry is particularly well suited for light scattering studies. It allows one to probe high atomic densities, leading to strong induced dipole-dipole interactions, while keeping a good enough light transmission for measurements. We monitor the deviation from the single atom behavior for near resonant light by varying the atomic density. We additionally monitor the spreading of photons inside the slab by injecting light only at the center of a disk of atoms. We also investigate collective excitations of the atomic gas. We measure the speed of sound which is linked to the superfluid density of the cloud and compare our results to a two-fluid hydrodynamic model predictions. Using a relevant geometry, we additionally study how an isolated system goes back to equilibrium. This is done by imaging the phase of the resulting Bose-Einstein condensate (BEC) after merging up to twelve BECs.Les atomes ultrafroids constituent depuis une vingtaine d’années un domaine fructueux pour l’étude de la physique à N corps. Cependant l’inhomogénéité des nuages atomiques, induite par les méthodes de piégeage utilisées habituellement, constitue une limite pour les études portant sur de grandes échelles de longueur. Nous reportons ici la mise en place d’un nouveau dispositif expérimental, combinant un potentiel modulable à bords raides et fond plat dans le plan atomique, avec un confinement versatile dans la troisième direction. Nous nous intéressons à différentes excitations du système, premièrement des degrés de liberté internes des atomes via leur interaction avec la lumière, puis deuxièmement de leur mouvement collectif avec la propagation de phonons. La répartition des atomes dans un plan est particulièrement adaptée aux études de diffusion de la lumière. Elle permet en effet de sonder de fortes densités atomiques, entraînant de fortes interactions dipôle-dipôle induites, tout en gardant un signal transmis suffisant pour effectuer des mesures. Nous avons mesuré la déviation au comportement d’un atome isolé pour de la lumière proche de résonance lorsque la densité atomique est modifiée. Nous avons également étudié la diffusion de photons dans un disque d’atomes en injectant de la lumière seulement au centre du disque. Nous nous sommes ensuite intéressés aux excitations collectives du gaz. Nous avons mesuré la vitesse du son dans le milieu, qui est liée à la fraction superfluide du système, et comparé nos résultats aux prédictions d’un modèle hydrodynamique à deux fluides. En utilisant une géométrie adaptée, nous avons en outre étudié la dynamique de retour à l’équilibre d’un système isolé, en imageant la phase du condensat de Bose-Einstein résultant de la fusion de jusqu’à douze condensats
Identification of Symptomatic Fetuses Infected with Cytomegalovirus Using Amniotic Fluid Peptide Biomarkers
<div><p>Cytomegalovirus (CMV) is the most common cause of congenital infection, and is a major cause of sensorineural hearing loss and neurological disabilities. Evaluating the risk for a CMV infected fetus to develop severe clinical symptoms after birth is crucial to provide appropriate guidance to pregnant women who might have to consider termination of pregnancy or experimental prenatal medical therapies. However, establishing the prognosis before birth remains a challenge. This evaluation is currently based upon fetal imaging and fetal biological parameters, but the positive and negative predictive values of these parameters are not optimal, leaving room for the development of new prognostic factors. Here, we compared the amniotic fluid peptidome between asymptomatic fetuses who were born as asymptomatic neonates and symptomatic fetuses who were either terminated in view of severe cerebral lesions or born as severely symptomatic neonates. This comparison allowed us to identify a 34-peptide classifier in a discovery cohort of 13 symptomatic and 13 asymptomatic neonates. This classifier further yielded 89% sensitivity, 75% specificity and an area under the curve of 0.90 to segregate 9 severely symptomatic from 12 asymptomatic neonates in a validation cohort, showing an overall better performance than that of classical fetal laboratory parameters. Pathway analysis of the 34 peptides underlined the role of viral entry in fetuses with severe brain disease as well as the potential importance of both beta-2-microglobulin and adiponectin to protect the injured fetal brain infected with CMV. The results also suggested the mechanistic implication of the T calcium channel alpha-1G (CACNA1G) protein in the development of seizures in severely CMV infected children. These results open a new field for potential therapeutic options. In conclusion, this study demonstrates that amniotic fluid peptidome analysis can effectively predict the severity of congenital CMV infection. This peptidomic classifier may therefore be used in clinical settings during pregnancy to improve prenatal counseling.</p></div
Performance of the CMV34 classifier in the validation cohort.
<p>(<b>A</b>) Correlation analysis of the CMV34 classifier and gestational age. (<b>B</b>) ROC curve for the CMV34 classifier. (<b>C</b>) Box-whisker plot for classification of symptomatic and asymptomatic patients in the validation set according to the CMV34 score. **p<0.01, Mann-Whitney test for independent samples.</p