454 research outputs found
Robustness of quantum discord to sudden death
We calculate the dissipative dynamics of two-qubit quantum discord under
Markovian environments. We analyze various dissipative channels such as
dephasing, depolarizing, and generalized amplitude damping, assuming
independent perturbation, in which each qubit is coupled to its own channel.
Choosing initial conditions that manifest the so-called sudden death of
entanglement, we compare the dynamics of entanglement with that of quantum
discord. We show that in all cases where entanglement suddenly disappears,
quantum discord vanishes only in the asymptotic limit, behaving similarly to
individual decoherence of the qubits, even at finite temperatures. Hence,
quantum discord is more robust than the entanglement against to decoherence so
that quantum algorithms based only on quantum discord correlations may be more
robust than those based on entanglement.Comment: 4 figures, 4 page
Sensitivity of electromagnetically induced transparency to light-mediated interactions
Here we present a microscopic model that describes the Electromagnetically
Induced Transparency (EIT) phenomenon in the multiple scattering regime. We
consider an ensemble of cold three-level atoms, in a configuration,
scattering a probe and a control field to the vacuum modes of the
electromagnetic field. By first considering a scalar description of the
scattering, we show that the light-mediated long-range interactions that emerge
between the dipoles narrow the EIT transparency window for increasing densities
and sample sizes. For a vectorial description, we demonstrate that near-field
interacting terms can critically affect the atomic population transfer in the
Stimulated Raman Adiabatic Passage (STIRAP). This result points out that
standard STIRAP-based quantum memories in cold atomic ensembles would not reach
high enough efficiencies for quantum information processing applications even
in dilute regimes.Comment: 9 pages, 5 figure
- …