26 research outputs found
Coalescence in the 1D Cahn-Hilliard model
We present an approximate analytical solution of the Cahn-Hilliard equation
describing the coalescence during a first order phase transition. We have
identified all the intermediate profiles, stationary solutions of the noiseless
Cahn-Hilliard equation. Using properties of the soliton lattices, periodic
solutions of the Ginzburg-Landau equation, we have construct a family of ansatz
describing continuously the processus of destabilization and period doubling
predicted in Langer's self similar scenario
Feedback Loops Between Fields and Underlying Space Curvature: an Augmented Lagrangian Approach
We demonstrate a systematic implementation of coupling between a scalar field
and the geometry of the space (curve, surface, etc.) which carries the field.
This naturally gives rise to a feedback mechanism between the field and the
geometry. We develop a systematic model for the feedback in a general form,
inspired by a specific implementation in the context of molecular dynamics (the
so-called Rahman-Parrinello molecular dynamics, or RP-MD). We use a generalized
Lagrangian that allows for the coupling of the space's metric tensor (the first
fundamental form) to the scalar field, and add terms motivated by RP-MD. We
present two implementations of the scheme: one in which the metric is only
time-dependent [which gives rise to ordinary differential equation (ODE) for
its temporal evolution], and one with spatio-temporal dependence [wherein the
metric's evolution is governed by a partial differential equation (PDE)].
Numerical results are reported for the (1+1)-dimensional model with a
nonlinearity of the sine-Gordon type.Comment: 5 pages, 3 figures, Phys. Rev. E in pres
Self-Dual Bending Theory for Vesicles
We present a self-dual bending theory that may enable a better understanding
of highly nonlinear global behavior observed in biological vesicles. Adopting
this topological approach for spherical vesicles of revolution allows us to
describe them as frustrated sine-Gordon kinks. Finally, to illustrate an
application of our results, we consider a spherical vesicle globally distorted
by two polar latex beads.Comment: 10 pages, 3 figures, LaTeX2e+IOPar
Stability of an erodible bed in various shear flows
The 2D laminar quasi-steady asymptotically simplified and linearized flow with a simplified mass transport of sediments is solved over a slowly erodible bed in various laminar basic shear flow (steady, oscillating or decelerating). The simplified mass transport equation includes the two following phenomena: flux of erosion when the skin friction goes over a threshold value, and a non local effect coming either from an inertial effect or from a slope effect. It is shown that the bed is always unstable for small wave numbers. Examples of long time evolution in various shear régimes are presented, wave trains of ripples are created and merge into a unique bump. This coarsening process is such that the maximum wave length obeys a power law with time. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005