9,041 research outputs found

    Organic loading rate: a promising microbial management tool in anaerobic digestion

    Get PDF
    This study investigated the effect of changes in organic loading rate (OLR) and feedstock on the volatile fatty acids (VFAs) production and their potential use as a bioengineering management tool to improve stability of anaerobic digesters. Digesters were exposed to one or two changes in OLR using the same or different co-substrates (Fat Oil and Grease waste (FOG) and/or glycerol). Although all the OLR fluctuations produced a decrease in biogas and methane production, the digesters exposed twice to glycerol showed faster recovery towards stable conditions after the second OLR change. This was correlated with the composition of the VFAs produced and their mode of production, from parallel to sequential, resulting in a more efficient recovery from inhibition of methanogenesis. The change in acids processing after the first OLR increase induced a shift in the microbial community responsible of the process optimisation when the digesters were exposed to a subsequent OLR increase with the same feedstock. When the digesters were exposed to an OLR change with a different feedstock (FOG), the recovery took 7d longer than with the same one (glycerol). However, the microbial community showed functional resilience and was able to perform similarly to pre-exposure conditions. Thus, changes in operational conditions can be used to influence microbial community structure for anaerobic digestion (AD) optimisation. Finally, shorter recovery times and increased resilience of digesters were linked to higher numbers of Clostridia incertae sedis XV, suggesting that this group may be a good candidate for AD bioaugmentation to speed up recovery after process instability or OLR increase

    Scientific instruments for climate change adaptation: estimating and optimizing the efficiency of ecosystem service provision

    Get PDF
    Adaptation to the consequences of climate change can depend on efficient use of ecosystem services (ES), i.e. a better use of natural services through management of the way in which they are delivered to society. While much discussion focuses on reducing consumption and increasing production of services, a lack of scientific instruments has so far prevented other mechanisms to improve ecosystem services efficiency from being addressed systematically as an adaptation strategy. This paper describes new methodologies for assessing ecosystem services and quantifying their values to humans, highlighting the role of ecosystem service flow analysis in optimizing the efficiency of ES provision.Ecosystem services, flow analysis, Bayesian modeling, spatial analysis, Environmental Economics and Policy, Q01, Q54, Q55, Q57,

    Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance.

    Get PDF
    open access articleDry digestion is a suitable technology for treating organic wastes with varying composition such as the organic fraction of municipal solids waste. Yet, there is a need for further research to overcome some of the disadvantages associated with the high total solids content of the process. Optimisation of inoculum to substrate ratio, feedstock composition and size, liquid recirculation, bed compaction and use of bulking agents are some of the parameters that need further investigation in batch dry anaerobic digestion, to limit localised inhibition effects and avoid process instability. In addition, further attention on the relation between feedstock composition, organic loading rate and mixing regimes is required for continuous dry anaerobic digestion systems. This paper highlights all the areas where knowledge is scarce and value can be added to increase dry anaerobic digestion performance and expansion

    Commutators of symmetries in characteristic 2

    Get PDF
    AbstractLet V be a nonsingular vector space over a field K of characteristic 2 with |K|>3. Suppose K is perfect and π is an element in the special orthogonal group SO(V)=Ω(V) with dimB(π)=2d. The length of π with respect to the symmetry commutators is d if B(π) is not totally isotropic; otherwise it is d+1

    Panelists\u27 Comments on Cobb\u27s Paper

    Get PDF
    • …
    corecore