108 research outputs found
International Paediatric Mitochondrial Disease Scale
published_or_final_versio
Bi-allelic variants in RNF170 are associated with hereditary spastic paraplegia.
Alterations of Ca2+ homeostasis have been implicated in a wide range of neurodegenerative diseases. Ca2+ efflux from the endoplasmic reticulum into the cytoplasm is controlled by binding of inositol 1,4,5-trisphosphate to its receptor. Activated inositol 1,4,5-trisphosphate receptors are then rapidly degraded by the endoplasmic reticulum-associated degradation pathway. Mutations in genes encoding the neuronal isoform of the inositol 1,4,5-trisphosphate receptor (ITPR1) and genes involved in inositol 1,4,5-trisphosphate receptor degradation (ERLIN1, ERLIN2) are known to cause hereditary spastic paraplegia (HSP) and cerebellar ataxia. We provide evidence that mutations in the ubiquitin E3 ligase gene RNF170, which targets inositol 1,4,5-trisphosphate receptors for degradation, are the likely cause of autosomal recessive HSP in four unrelated families and functionally evaluate the consequences of mutations in patient fibroblasts, mutant SH-SY5Y cells and by gene knockdown in zebrafish. Our findings highlight inositol 1,4,5-trisphosphate signaling as a candidate key pathway for hereditary spastic paraplegias and cerebellar ataxias and thus prioritize this pathway for therapeutic interventions
International Paediatric Mitochondrial Disease Scale
Objective: There is an urgent need for reliable and universally applicable outcome measures for children with mitochondrial diseases. In this study, we aimed to adapt the currently available Newcastle Paediatric Mitochondrial Disease Scale (NPMDS) to the International Paediatric Mitochondrial Disease Scale (IPMDS) during a Delphi-based process with input from international collaborators, patients and caretakers, as well as a pilot reliability study in eight patients. Subsequently, we aimed to test the feasibility, construct validity and reliability of the IPMDS in a multicentre study. Methods: A clinically, biochemically and genetically heterogeneous group of 17 patients (age 1.6–16 years) from five different expert centres from four different continents were evaluated in this study. Results: The feasibility of the IPMDS was good, as indicated by a low number of missing items (4 %) and the positive evaluation of patients, parents and users. Principal component analysis of our small sample identified three factors, which explained 57.9 % of the variance. Good construct validity was found using hypothesis testing. The overall interrater reliability was good [median intraclass correlation coefficient for agreement between raters (ICCagreement) 0.85; range 0.23–0.99). Conclusion: In conclusion, we suggest using the IPMDS for assessing natural history in children with mitochondrial diseases. These data should be used to further explore construct validity of the IPMDS and to set age limits. In parallel, responsiveness and the minimal clinically important difference should be studied to facilitate sample size calculations in future clinical trials
Interpersonal violence against women and maternity care in Migori County, Kenya: evidence from a cross-sectional survey
BackgroundInterpersonal violence (IPV) is an issue of major public health concern, with 24% of Kenyan women reporting physical violence perpetrated by a current husband or partner. IPV has profound impacts on physical and mental health outcomes, particularly for pregnant women; it has been found to increase the risk of perinatal mortality, low birth weight, and preterm birth. This study aims to identify variables associated with IPV and assess the effects of IPV experience on prenatal and peripartum maternal healthcare in Migori County, Kenya. Findings build on a previous study that investigated a smaller region of Migori County.MethodsResponses to cross-sectional household surveys conducted in six wards of Migori County, Kenya in 2021 from female respondents aged 18 and older were analyzed. The survey contained validated screening tools for interpersonal violence. Group-wise comparisons, and bivariate and multivariate logistic regression analyses were performed to describe community prevalence, factors associated with IPV against women, and the effect of IPV exposure on prenatal and peripartum health care.ResultsThis study finds that 2,306 (36.7%) of the 6,290 respondents had experienced lifetime IPV. IPV experience was associated with the age group 25–49 (adjusted odds ratio (aOR) 1.208; 95%CI: [1.045–1.397]; p = 0.011), monogamous marriage [aOR 2.152; 95%CI: (1.426–3.248); p < 0.001], polygamous marriage [aOR 2.924; 95%CI: (1.826–4.683); p < 0.001], being widowed/divorced/separated [aOR 1.745; 95%CI: (1.094–2.786); p < 0.001], feeling an attitude of “sometimes okay” toward wife beating [aOR 2.002 95%CI: (1.651, 2.428); p < 0.001], having been exposed to IPV in girlhood [aOR 2.525; 95%CI: (2.202–2.896); p < 0.001] and feeling safe in the current relationship [aOR 0.722; 95%CI: (0.609, 0.855); p < 0.001]. A depression score of mild [aOR 1.482; 95%CI: (1.269, 1.73); p < 0.001] and severe [aOR 2.403; 95%CI: (1.429, 4.039); p = 0.001] was also associated with IPV experience, and women who experienced emotional abuse were much more likely to have experienced IPV [aOR 10.462; 95% CI: (9.037, 12.112); p < 0.001]. Adjusted analyses showed that having experienced IPV was negatively associated with attending at least four antenatal care visits during the most recent pregnancy (OR 0.849, p = 0.044) and with having a skilled birth attendant (OR 0.638, p = 0.007).ConclusionsIPV is prevalent in Migori County, Kenya, with increased prevalence among women aged 25–49, those residing in West Kanyamkago, those in a monogamous or polygamous marriage, those who have been widowed/divorced/separated, and those with severe depressive symptoms. Further, IPV exposure is associated with lower use of maternal care services and may lead to worse maternal health outcomes. There is need for enhanced effort in addressing social and gender norms that perpetuate IPV, and this study can contribute to guiding policy interventions and community responses towards IPV
Enhanced Lifetime Of Excitons In Nonepitaxial Au/cds Core/shell Nanocrystals
The ability of metal nanoparticles to capture light through plasmon excitations offers an opportunity for enhancing the optical absorption of plasmon-coupled semiconductor materials via energy transfer. This process, however, requires that the semiconductor component is electrically insulated to prevent a backward charge flow into metal and interfacial states, which causes a premature dissociation of excitons. Here we demonstrate that such an energy exchange can be achieved on the nanoscale by using nonepitaxial Au/CdS core/shell nanocomposites. These materials are fabricated via a multistep cation exchange reaction, which decouples metal and semiconductor phases leading to fewer interfacial defects. Ultrafast transient absorption measurements confirm that the lifetime of excitons in the CdS shell (tau approximate to 300 ps) is much longer than lifetimes of excitons in conventional, reduction-grown Au/CdS heteronanostructures. As a result, the energy of metal nanoparticles can be efficiently utilized by the semiconductor component without undergoing significant nonradiative energy losses, an important property for catalytic or photovoltaic applications. The reduced rate of exciton dissociation in the CdS domain of Au/CdS nanocomposites was attributed to the nonepitaxial nature of Au/CdS interfaces associated with low defect density and a high potential barrier of the interstitial phase
Sequential targeted exome sequencing of 1001 patients affected by unexplained limb-girdle weakness
Several hundred genetic muscle diseases have been described, all of which are rare. Their clinical and genetic heterogeneity means that a genetic diagnosis is challenging. We established an international consortium, MYO-SEQ, to aid the work-ups of muscle disease patients and to better understand disease etiology. Exome sequencing was applied to 1001 undiagnosed patients recruited from more than 40 neuromuscular disease referral centers; standardized phenotypic information was collected for each patient. Exomes were examined for variants in 429 genes associated with muscle conditions. We identified suspected pathogenic variants in 52% of patients across 87 genes. We detected 401 novel variants, 116 of which were recurrent. Variants in CAPN3, DYSF, ANO5, DMD, RYR1, TTN, COL6A2, and SGCA collectively accounted for over half of the solved cases; while variants in newer disease genes, such as BVES and POGLUT1, were also found. The remaining well-characterized unsolved patients (48%) need further investigation. Using our unique infrastructure, we developed a pathway to expedite muscle disease diagnoses. Our data suggest that exome sequencing should be used for pathogenic variant detection in patients with suspected genetic muscle diseases, focusing first on the most common disease genes described here, and subsequently in rarer and newly characterized disease genes
Monogenic variants in dystonia: an exome-wide sequencing study
Background Dystonia is a clinically and genetically heterogeneous condition that occurs in isolation (isolated dystonia), in combination with other movement disorders (combined dystonia), or in the context of multisymptomatic phenotypes (isolated or combined dystonia with other neurological involvement). However, our understanding of its aetiology is still incomplete. We aimed to elucidate the monogenic causes for the major clinical categories of dystonia. Methods For this exome-wide sequencing study, study participants were identified at 33 movement-disorder and neuropaediatric specialty centres in Austria, Czech Republic, France, Germany, Poland, Slovakia, and Switzerland. Each individual with dystonia was diagnosed in accordance with the dystonia consensus definition. Index cases were eligible for this study if they had no previous genetic diagnosis and no indication of an acquired cause of their illness. The second criterion was not applied to a subset of participants with a working clinical diagnosis of dystonic cerebral palsy. Genomic DNA was extracted from blood of participants and whole-exome sequenced. To find causative variants in known disorder-associated genes, all variants were filtered, and unreported variants were classified according to American College of Medical Genetics and Genomics guidelines. All considered variants were reviewed in expert round-table sessions to validate their clinical significance. Variants that survived filtering and interpretation procedures were defined as diagnostic variants. In the cases that went undiagnosed, candidate dystonia-causing genes were prioritised in a stepwise workflow. Findings We sequenced the exomes of 764 individuals with dystonia and 346 healthy parents who were recruited between June 1, 2015, and July 31, 2019. We identified causative or probable causative variants in 135 (19%) of 728 families, involving 78 distinct monogenic disorders. We observed a larger proportion of individuals with diagnostic variants in those with dystonia (either isolated or combined) with coexisting non-movement disorder-related neurological symptoms (100 [45%] of 222;excepting cases with evidence of perinatal brain injury) than in those with combined (19 [19%] of 98) or isolated (16 [4%] of 388) dystonia. Across all categories of dystonia, 104 (65%) of the 160 detected variants affected genes which are associated with neurodevelopmental disorders. We found diagnostic variants in 11 genes not previously linked to dystonia, and propose a predictive clinical score that could guide the implementation of exome sequencing in routine diagnostics. In cases without perinatal sentinel events, genomic alterations contributed substantively to the diagnosis of dystonic cerebral palsy. In 15 families, we delineated 12 candidate genes. These include IMPDH2, encoding a key purine biosynthetic enzyme, for which robust evidence existed for its involvement in a neurodevelopmental disorder with dystonia. We identified six variants in IMPDH2, collected from four independent cohorts, that were predicted to be deleterious de-novo variants and expected to result in deregulation of purine metabolism. Interpretation In this study, we have determined the role of monogenic variants across the range of dystonic disorders, providing guidance for the introduction of personalised care strategies and fostering follow-up pathophysiological explorations
- …