4,116 research outputs found

    Potential energy topology and relaxation processes in a model glass

    Full text link
    We use computer simulation to investigate the topology of the potential energy V({R})V(\{{\bf R}\}) and to search for doublewell potential's (DWP) in a model glass . By a sequence of Newtonian and dissipative dynamics we find different minima of V({R})V(\{{\bf R}\}) and the energy profile along the least action paths joining them. At variance with previous suggestions, we find that the parameters describing the DWP's are correlated among each others. Moreover, the trajectory of the system in the 3NN-d configurational phase space follows a quasi-1-d manifold. The motion parallel to the path is characterized by jumps between minima, and is nearly uncorrelated from the orthogonal, harmonic, dynamics.Comment: 4 pages, RevTex, 4 PostScript figure

    ORIGIN OF LIGHT SCATTERING FROM DISORDERED SYSTEMS

    Full text link
    Anelastic light scattering is computed numerically for model disordered systems (linear chains and 2-dimensional site and bond percolators), with and without electrical disorder. A detailed analysis of the vibrational modes and of their Raman activity evidences that two extreme mechanisms for scattering may be singled out. One of these resembles scattering from finite size systems, while the other mechanisms originates from spatial fluctuations of the polarizability and is such that modes in even small frequency intervals may have very different Raman activities. As a consequence, the average coupling coefficient C(ω)C(\omega) is the variance of a zero-average quantity. Our analysis shows that for both linear chains and 2-dimensional percolators the second mechanism dominates over the first, and therefore Raman scattering from disordered systems is essentially due to spatial fluctuations.Comment: 12 pages, Latex, 7 figures available on request

    Frustration and sound attenuation in structural glasses

    Full text link
    Three classes of harmonic disorder systems (Lennard-Jones like glasses, percolators above threshold, and spring disordered lattices) have been numerically investigated in order to clarify the effect of different types of disorder on the mechanism of high frequency sound attenuation. We introduce the concept of frustration in structural glasses as a measure of the internal stress, and find a strong correlation between the degree of frustration and the exponent alpha that characterizes the momentum dependence of the sound attenuation Gamma(Q)Gamma(Q)≃\simeqQαQ^\alpha. In particular, alpha decreases from about d+1 in low-frustration systems (where d is the spectral dimension), to about 2 for high frustration systems like the realistic glasses examined.Comment: Revtex, 4 pages including 4 figure

    High frequency sound waves in vitreous silica

    Full text link
    We report a molecular dynamics simulation study of the sound waves in vitreous silica in the mesoscopic exchanged momentum range. The calculated dynamical structure factors are in quantitative agreement with recent experimental inelastic neutron and x-ray scattering data. The analysis of the longitudinal and transverse current spectra allows to discriminate between opposite interpretations of the existing experimental data in favour of the propagating nature of the high frequency sound waves.Comment: 4 pages, Revtex, 4 ps figures; to be published in Phys. Rev. Lett., February 198
    • 

    corecore