3 research outputs found

    Fine Structure of Posterior Alpha Rhythm in Human EEG: Frequency Components, Their Cortical Sources, and Temporal Behavior.

    Get PDF
    Heterogeneity of the posterior alpha rhythm (AR) is a widely assumed but rarely tested phenomenon. We decomposed the posterior AR in the cortical source space with a 3-way PARAFAC technique, taking into account the spatial, frequency, and temporal aspects of mid-density EEG. We found a multicomponent AR structure in 90% of a group of 29 healthy adults. The typical resting-state structure consisted of a high-frequency occipito-parietal component of the AR (ARC1) and a low-frequency occipito-temporal component (ARC2), characterized by individual dynamics in time. In a few cases, we found a 3-component structure, with two ARC1s and one ARC2. The AR structures were stable in their frequency and spatial features over weeks to months, thus representing individual EEG alpha phenotypes. Cortical topography, individual stability, and similarity to the primate AR organization link ARC1 to the dorsal visual stream and ARC2 to the ventral one. Understanding how many and what kind of posterior AR components contribute to the EEG is essential for clinical neuroscience as an objective basis for AR segmentation and for interpreting AR dynamics under various conditions, both normal and pathological, which can selectively affect individual components

    Aging of human alpha rhythm.

    No full text
    Alpha rhythm (AR) changes are the most pronounced electroencephalogram phenomenon in the aging brain. We analyzed them based on the inherent AR structure obtained by parallel factor analysis decomposition in the cortical source space. AR showed a stable multicomponent structure in 78% of sixty 20- to 81-year-old healthy adults. Typically, it consists of 2 components. The distribution of the higher frequency occipito-parietal component widens with age, with its maximum moving from BA18/19 to BA37. The low-frequency component originating from the occipito-temporal regions in young adults also moves anteriorly with age, while maintaining its maximum within BA37. Both components slow down by 1 Hz over the adult lifespan. The multicomponent AR is more common in younger subjects, whereas a single-component AR in older subjects. This uneven occurrence as well as the increasing spatial and frequency overlaps between components suggest transformation of the multicomponent AR into the single-component AR with age. A detailed knowledge of AR component structure would be useful to monitor age-related neurodegenerative processes in humans

    Visual stimulus-dependent changes in interhemispheric EEG coherence in humans.

    No full text
    We analyzed the coherence of electroencephalographic (EEG) signals recorded symmetrically from the two hemispheres, while subjects (n = 9) were viewing visual stimuli. Considering the many common features of the callosal connectivity in mammals, we expected that, as in our animal studies, interhemispheric coherence (ICoh) would increase only with bilateral iso-oriented gratings located close to the vertical meridian of the visual field, or extending across it. Indeed, a single grating that extended across the vertical meridian significantly increased the EEG ICoh in normal adult subjects. These ICoh responses were obtained from occipital and parietal derivations and were restricted to the gamma frequency band. They were detectable with different EEG references and were robust across and within subjects. Other unilateral and bilateral stimuli, including identical gratings that were effective in anesthetized animals, did not affect ICoh in humans. This fact suggests the existence of regulatory influences, possibly of a top-down kind, on the pattern of callosal activation in conscious human subjects. In addition to establishing the validity of EEG coherence analysis for assaying cortico-cortical connectivity, this study extends to the human brain the finding that visual stimuli cause interhemispheric synchronization, particularly in frequencies of the gamma band. It also indicates that the synchronization is carried out by cortico-cortical connection and suggests similarities in the organization of visual callosal connections in animals and in man
    corecore