10 research outputs found

    Neuroinflammation in the dorsolateral prefrontal cortex in elderly chronic schizophrenia

    Get PDF
    Cognitive deterioration and symptom progression occur in schizophrenia over the course of the disorder. A dysfunction of the immune system/neuroinflammatory pathways has been linked to schizophrenia (SZ). These altered processes in the dorsolateral prefrontal cortex (DLPFC) could contribute to the worsening of the deficits. However, limited studies are available in this brain region in elderly population with long-term treatments. In this study, we explore the possible deregulation of 21 key genes involved in immune homeostasis, including pro- and anti- inflammatory cytokines, cytokine modulators (toll-like receptors, colony-stimulating factors, and members of the complement system) and microglial and astroglial markers in the DLPFC in elderly chronic schizophrenia. We used quantitative real-time reverse transcriptase poly- merase chain reaction (RT-PCR) on extracts from postmortem DLPFC of elderly subjects with chronic SZ ( n = 14) compared to healthy control individuals ( n = 14). We report that CSF1R, TLR4, IL6, TNF α, TNFRSF1A, IL10, IL10RA, IL10RB, and CD68 were down-regulated in elderly SZ subjects. Moreover, we found that the expression levels of all the altered inflammatory genes in SZ correlated with the microglial marker CD68 . However, no associations were found with the astroglial marker GFAP . This study reveals a decrease in the gene expression of cytokines and immune response/inflammation mediators in the DLPFC of elderly subjects with chronic schizophrenia, supporting the idea of a dysfunction of these processes in aged patients and its possible relationship with active microglia abundance. These findings include elements that might contribute to the cognitive decline and symptom progression linked to DLPFC functioning at advanced stages of the disease

    Kynurenine pathway in post-mortem prefrontal cortex and cerebellum in schizophrenia : relationship with monoamines and symptomatology

    Get PDF
    The cortico-cerebellar-thalamic-cortical circuit has been implicated in the emergence of psychotic symptoms in schizophrenia (SZ). The kynurenine pathway (KP) has been linked to alterations in glutamatergic and monoaminergic neurotransmission and to SZ symptomatology through the production of the metabolites quinolinic acid (QA) and kynurenic acid (KYNA). This work describes alterations in KP in the post-mortem prefrontal cortex (PFC) and cerebellum (CB) of 15 chronic SZ patients and 14 control subjects in PFC and 13 control subjects in CB using immunoblot for protein levels and ELISA for interleukins and QA and KYNA determinations. Monoamine metabolites were analysed by high-performance liquid chromatography and SZ symptomatology was assessed by Positive and Negative Syndrome Scale (PANSS). The association of KP with inflammatory mediators, monoamine metabolism and SZ symptomatology was explored. In the PFC, the presence of the anti-inflammatory cytokine IL-10 together with IDO2 and KATII enzymes decreased in SZ, while TDO and KMO enzyme expression increased. A network interaction analysis showed that in the PFC IL-10 was coupled to the QA branch of the kynurenine pathway (TDO-KMO-QA), whereas IL-10 associated with KMO in CB. KYNA in the CB inversely correlated with negative and general PANSS psychopathology. Although there were no changes in monoamine metabolite content in the PFC in SZ, a network interaction analysis showed associations between dopamine and methoxyhydroxyphenylglycol degradation metabolite. Direct correlations were found between general PANSS psychopathology and the serotonin degradation metabolite, 5-hydroxyindoleacetic acid. Interestingly, KYNA in the CB inversely correlated with 5-hydroxyindoleacetic acid in the PFC. Thus, this work found alterations in KP in two brain areas belonging to the cortico-cerebellar-thalamic-cortical circuit associated with SZ symptomatology, with a possible impact across areas in 5-HT degradation. The online version contains supplementary material available at 10.1186/s12974-021-02260-6

    Inhibition of Prolyl Oligopeptidase Restores Prohibitin 2 Levels in Psychosis Models: Relationship to Cognitive Deficits in Schizophrenia

    Get PDF
    Cognitive impairment represents one of the core features of schizophrenia. Prolyl Oligopeptidase (POP) inhibition is an emerging strategy for compensating cognitive deficits in hypoglutamatergic states such as schizophrenia, although little is known about how POP inhibitors exert their pharmacological activity. The mitochondrial and nuclear protein Prohibitin 2 (PHB2) could be dysregulated in schizophrenia. However, altered PHB2 levels in schizophrenia linked to N-methyl-D-aspartate receptor (NMDAR) activity and cognitive deficits are still unknown. To shed light on this, we measured the PHB2 levels by immunoblot in a postmortem dorsolateral prefrontal cortex (DLPFC) of schizophrenia subjects, in the frontal pole of mice treated with the NMDAR antagonists phencyclidine and dizocilpine, and in rat cortical astrocytes and neurons treated with dizocilpine. Mice and cells were treated in combination with the POP inhibitor IPR19. The PHB2 levels were also analyzed by immunocytochemistry in rat neurons. The PHB2 levels increased in DLPFC in cases of chronic schizophrenia and were associated with cognitive impairments. NMDAR antagonists increased PHB2 levels in the frontal pole of mice and in rat astrocytes and neurons. High levels of PHB2 were found in the nucleus and cytoplasm of neurons upon NMDAR inhibition. IPR19 restored PHB2 levels in the acute NMDAR inhibition. These results show that IPR19 restores the upregulation of PHB2 in an acute NMDAR hypoactivity stage suggesting that the modulation of PHB2 could compensate NMDAR-dependent cognitive impairments in schizophrenia.This research was funded by a Miguel Servet grant, MS16/00153-CP16/00153 to BR, financed and integrated into the National R+D+I and funded by the Instituto de Salud Carlos III (ISCIII, Spanish Ministry of Health)—General Branch Evaluation and Promotion of Health Research—and the European Regional Development Fund (ERDF). This work was also supported by ISCIII PI18/00213 to BR, the Predoctoral Fellowship Program from the ISCIII (PFIS) FI19/00080 to E.V, FPU fellowship from the Spanish Ministry of Education, Culture, and Sports FPU17/06000 to E.E., the CONICYT-Doctorado Becas Chile 2015, 72160426 to AV, and the CIBERSAM (Spanish Ministry of Economy, Industry, and Competitiveness, Institute of Health Carlos III). CIBERSAM will be encharged to fund open access publication fees

    Efficacy of the combination of water aerobics and metacognitive training on psychological and physical health variables and their relationship with SP1 and SP4 biomarkers in people with psychosis: a study protocol

    Get PDF
    BackgroundMetacognitive Training (MCT) is widely used and effective in reducing positive symptoms in psychosis. Physical exercise, such as Water Aerobics (WA), improves general health, quality of life and symptoms as a low impact activity that allows social interactions. Preliminary results suggest a relationship between dopamine and psychotic symptoms, through SP transcription factors, SP1 and SP4 biomarkers. The aims of the project are to evaluate the efficacy of a combined intervention (WA and MCT) for psychosis to improve psychotic symptoms, physical health, and transcription levels of SP biomarkers.Materials and methodsThis is a unicentric randomized controlled trial of three parallel intervention groups: MCT, WA and combined intervention. The estimated sample will be 48 patients with a psychotic spectrum disorder diagnosis. The assessment will be performed at baseline and at 2-months’ follow-up. Instruments used in the assessment will include clinical, cognitive, metacognitive, social cognitive and psychosocial variables.DiscussionThis will be the first study investigating the impact of the combination of MCT and WA in psychosis. Moreover, it will be the first study analyzing changes in the transcriptional biomarkers SP1 and SP4 after interventions. The results of this study may have clinical implications contributing to the improvement of treatment selection.Clinical trial registrationhttps://clinicaltrials.gov/, identifier: NCT05455593

    La Recerca en Conservació des de la Visió del Conservador-Restaurador II

    Get PDF
    Seguint la línia de divulgació científica iniciada durant la Setmana de la Ciència 2013, des de la Secció de Conservació-Restauració de la Facultat de Belles Arts (Universitat de Barcelona volem continuar difonent les investigacions que duem a terme. Des d'aquest any, a més, també volem donar cabuda a la recerca que es desenvolupa des dels Treballs Finals del Master Universitari de Direcció de Projectes de Conservació-Restauraració

    Analysis of networks in the dorsolateral prefrontal cortex in chronic schizophrenia : Relevance of altered immune response

    Get PDF
    The dorsolateral prefrontal cortex (DLPFC) has a crucial role in cognitive functioning and negative symptoms in schizophrenia. However, limited information of altered protein networks is available in this region in schizophrenia. We performed a proteomic analysis using single-shot liquid chromatography-tandem mass spectrometry of grey matter of postmortem DLPFC in chronic schizophrenia subjects (n = 20) and unaffected subjects (n = 20) followed by bioinformatic analysis to identify altered protein networks in schizophrenia (PXD024939 identifier in ProteomeXchange repository). Our results displayed a proteome profile in the DLPFC of 1989 proteins. 43 proteins were found significantly altered in schizophrenia. Analysis of this panel showed an enrichment of biological processes implicated in vesicle-mediated transport, processing and antigen presentation via MHC class II, intracellular transport and selenium metabolism. The enriched identified pathways were MHC class II antigen presentation, vesicle-mediated transport, Golgi ER retrograde transport, Nef mediated CD8 downregulation and the immune system. All these enriched categories were found to be downregulated. Furthermore, our network analyses showed crosstalk between proteins involved in MHC class II antigen presentation, membrane trafficking, Golgi-to-ER retrograde transport, Nef-mediated CD8 downregulation and the immune system with only one module built by 13 proteins. RAB7A showed eight interactions with proteins of all these pathways. Our results provide an altered molecular network involved in immune response in the DLPFC in schizophrenia with a central role of RAB7A. These results suggest that RAB7A or other proteins of this network could be potential targets for novel pharmacological strategies in schizophrenia for improving cognitive and negative symptoms

    Neuroinflammation in the dorsolateral prefrontal cortex in elderly chronic schizophrenia

    Full text link
    Cognitive deterioration and symptom progression occur in schizophrenia over the course of the disorder. A dysfunction of the immune system/neuroinflammatory pathways has been linked to schizophrenia (SZ). These altered processes in the dorsolateral prefrontal cortex (DLPFC) could contribute to the worsening of the deficits. However, limited studies are available in this brain region in elderly population with long-term treatments. In this study, we explore the possible deregulation of 21 key genes involved in immune homeostasis, including pro- and anti- inflammatory cytokines, cytokine modulators (toll-like receptors, colony-stimulating factors, and members of the complement system) and microglial and astroglial markers in the DLPFC in elderly chronic schizophrenia. We used quantitative real-time reverse transcriptase poly- merase chain reaction (RT-PCR) on extracts from postmortem DLPFC of elderly subjects with chronic SZ ( n = 14) compared to healthy control individuals ( n = 14). We report that CSF1R, TLR4, IL6, TNF α, TNFRSF1A, IL10, IL10RA, IL10RB, and CD68 were down-regulated in elderly SZ subjects. Moreover, we found that the expression levels of all the altered inflammatory genes in SZ correlated with the microglial marker CD68 . However, no associations were found with the astroglial marker GFAP . This study reveals a decrease in the gene expression of cytokines and immune response/inflammation mediators in the DLPFC of elderly subjects with chronic schizophrenia, supporting the idea of a dysfunction of these processes in aged patients and its possible relationship with active microglia abundance. These findings include elements that might contribute to the cognitive decline and symptom progression linked to DLPFC functioning at advanced stages of the disease

    Neuroinflammation in the dorsolateral prefrontal cortex in elderly chronic schizophrenia

    Full text link
    Cognitive deterioration and symptom progression occur in schizophrenia over the course of the disorder. A dysfunction of the immune system/neuroinflammatory pathways has been linked to schizophrenia (SZ). These altered processes in the dorsolateral prefrontal cortex (DLPFC) could contribute to the worsening of the deficits. However, limited studies are available in this brain region in elderly population with long-term treatments. In this study, we explore the possible deregulation of 21 key genes involved in immune homeostasis, including pro- and anti- inflammatory cytokines, cytokine modulators (toll-like receptors, colony-stimulating factors, and members of the complement system) and microglial and astroglial markers in the DLPFC in elderly chronic schizophrenia. We used quantitative real-time reverse transcriptase poly- merase chain reaction (RT-PCR) on extracts from postmortem DLPFC of elderly subjects with chronic SZ ( n = 14) compared to healthy control individuals ( n = 14). We report that CSF1R, TLR4, IL6, TNF α, TNFRSF1A, IL10, IL10RA, IL10RB, and CD68 were down-regulated in elderly SZ subjects. Moreover, we found that the expression levels of all the altered inflammatory genes in SZ correlated with the microglial marker CD68 . However, no associations were found with the astroglial marker GFAP . This study reveals a decrease in the gene expression of cytokines and immune response/inflammation mediators in the DLPFC of elderly subjects with chronic schizophrenia, supporting the idea of a dysfunction of these processes in aged patients and its possible relationship with active microglia abundance. These findings include elements that might contribute to the cognitive decline and symptom progression linked to DLPFC functioning at advanced stages of the disease

    Kynurenine pathway in post-mortem prefrontal cortex and cerebellum in schizophrenia: relationship with monoamines and symptomatology

    Full text link
    Background: The cortico-cerebellar-thalamic-cortical circuit has been implicated in the emergence of psychotic symptoms in schizophrenia (SZ). The kynurenine pathway (KP) has been linked to alterations in glutamatergic and monoaminergic neurotransmission and to SZ symptomatology through the production of the metabolites quinolinic acid (QA) and kynurenic acid (KYNA). Methods: This work describes alterations in KP in the post-mortem prefrontal cortex (PFC) and cerebellum (CB) of 15 chronic SZ patients and 14 control subjects in PFC and 13 control subjects in CB using immunoblot for protein levels and ELISA for interleukins and QA and KYNA determinations. Monoamine metabolites were analysed by high-performance liquid chromatography and SZ symptomatology was assessed by Positive and Negative Syndrome Scale (PANSS). The association of KP with inflammatory mediators, monoamine metabolism and SZ symptomatology was explored. Results: In the PFC, the presence of the anti-inflammatory cytokine IL-10 together with IDO2 and KATII enzymes decreased in SZ, while TDO and KMO enzyme expression increased. A network interaction analysis showed that in the PFC IL-10 was coupled to the QA branch of the kynurenine pathway (TDO-KMO-QA), whereas IL-10 associated with KMO in CB. KYNA in the CB inversely correlated with negative and general PANSS psychopathology. Although there were no changes in monoamine metabolite content in the PFC in SZ, a network interaction analysis showed associations between dopamine and methoxyhydroxyphenylglycol degradation metabolite. Direct correlations were found between general PANSS psychopathology and the serotonin degradation metabolite, 5-hydroxyindoleacetic acid. Interestingly, KYNA in the CB inversely correlated with 5-hydroxyindoleacetic acid in the PFC. Conclusions: Thus, this work found alterations in KP in two brain areas belonging to the cortico-cerebellar-thalamic-cortical circuit associated with SZ symptomatology, with a possible impact across areas in 5-HT degradation
    corecore