5 research outputs found

    Mucoadhesive Marine Polysaccharides

    No full text
    Mucoadhesive polymers are of growing interest in the field of drug delivery due to their ability to interact with the body’s mucosa and increase the effectiveness of the drug. Excellent mucoadhesive performance is typically observed for polymers possessing charged groups or non-ionic functional groups capable of forming hydrogen bonds and electrostatic interactions with mucosal surfaces. Among mucoadhesive polymers, marine carbohydrate biopolymers have been attracting attention due to their biocompatibility and biodegradability, sample functional groups, strong water absorption and favorable physiochemical properties. Despite the large number of works devoted to mucoadhesive polymers, there are very few systematic studies on the influence of structural features of marine polysaccharides on mucoadhesive interactions. The purpose of this review is to characterize the mucoadhesive properties of marine carbohydrates with a focus on chitosan, carrageenan, alginate and their use in designing drug delivery systems. A wide variety of methods which have been used to characterize mucoadhesive properties of marine polysaccharides are presented in this review. Mucoadhesive drug delivery systems based on such polysaccharides are characterized by simplicity and ease of use in the form of tablets, gels and films through oral, buccal, transbuccal and local routes of administration

    Comparative Analysis of the Functional Properties of Films Based on Carrageenans, Chitosan, and Their Polyelectrolyte Complexes

    No full text
    The influence of the structural features of carrageenan on the functional properties of the films was studied. The carrageenans and chitosan films, as well as three-layer films containing a polyelectrolyte complex (PEC) of the two, were prepared. The X-ray diffractograms of carrageenan films reflected its amorphous structure, whereas chitosan and three-layer films were characterized by strong reflection in the regions of 20° and 15° angles, respectively. The SEM of the cross-sectional morphology showed dense packing of the chitosan film, as well as the layer-by-layer structure of different densities for the PEC. Among the tested samples, κ/β-carrageenan and chitosan films showed the highest tensile strength and maximum elongation. Films containing the drug substance echinochrome were obtained. Mucoadhesive properties were assessed as the ability of the films to swell on the mucous tissue and their erosion after contact with the mucosa. All studied films exhibited mucoadhesive properties. All studied films exhibited mucoadhesive properties which depended on the carrageenans structure. Multilayer films are stronger than single-layer carrageenan films due to PEC formation. The resulting puncture strength of the obtained films was comparable to that of commercial samples described in the literature

    The Comparative Immunotropic Activity of Carrageenan, Chitosan and Their Complexes

    No full text
    The immunotropic activity of polyelectrolyte complexes (PEC) of κ-carrageenan (κ-CGN) and chitosan (CH) of various compositions was assessed in comparison with the initial polysaccharides in comparable doses. For this, two soluble forms of PEC, with an excess of CH (CH:CGN mass ratios of 10:1) and with an excess of CGN (CH: CGN mass ratios of 1:10) were prepared. The ability of PEC to scavenge NO depended on the content of the κ-CGN in the PEC. The ability of the PEC to induce the synthesis of pro-inflammatory (tumor necrosis factor-α (TNF-α)) and anti-inflammatory (interleukine-10 (IL-10)) cytokines in peripheral blood mononuclear cell was determined by the activity of the initial κ-CGN, regardless of their composition. The anti-inflammatory activity of PEC and the initial compounds was studied using test of histamine-, concanavalin A-, and sheep erythrocyte immunization-induced inflammation in mice. The highest activity of PEC, as well as the initial polysaccharides κ-CGN and CH, was observed in a histamine-induced exudative inflammation, directly related to the activation of phagocytic cells, i.e., macrophages and neutrophils

    Physicochemical Properties and Antiherpetic Activity of Îş-Carrageenan Complex with Chitosan

    No full text
    Nanoparticles formation is one of the ways to modulate the physicochemical properties and enhance the activity of original polysaccharides. For this purpose, based on the polysaccharide of red algae, κ-carrageenan (κ-CRG), it polyelectrolyte complex (PEC), with chitosan, were obtained. The complex formation was confirmed by ultracentrifugation in a Percoll gradient, with dynamic light scattering. According to electron microscopy and DLS, PEC is dense spherical particles with sizes in the range of 150–250 nm. A decrease in the polydispersity of the initial CRG was detected after the PEC formation. Simultaneous exposure of Vero cells with the studied compounds and herpes simplex virus type 1 (HSV-1) showed that the PEC exhibited significant antiviral activity, effectively inhibiting the early stages of virus–cell interaction. A two-fold increase in the antiherpetic activity (selective index) of PEC compared to κ-CRG was shown, which may be due to a change in the physicochemical characteristics of κ-CRG in PEC

    Polyvinylpyrrolidone—Alginate—Carbonate Hydroxyapatite Porous Composites for Dental Applications

    No full text
    An alternative approach for the currently used replacement therapy in dentistry is to apply materials that restore tooth tissue. Among them, composites, based on biopolymers with calcium phosphates, and cells can be applied. In the present work, a composite based on polyvinylpyrrolidone (PVP) and alginate (Alg) with carbonate hydroxyapatite (CHA) was prepared and characterized. The composite was investigated by X-ray diffraction, infrared spectroscopy, electron paramagnetic resonance (EPR) and scanning electron microscopy methods, and the microstructure, porosity, and swelling properties of the material were described. In vitro studies included the MTT test using mouse fibroblasts, and adhesion and survivability tests with human dental pulp stem cells (DPSC). The mineral component of the composite corresponded to CHA with an admixture of amorphous calcium phosphate. The presence of a bond between the polymer matrix and CHA particles was shown by EPR. The structure of the material was represented by micro- (30–190 μm) and nano-pores (average 8.71 ± 4.15 nm). The swelling measurements attested that CHA addition increased the polymer matrix hydrophilicity by 200%. In vitro studies demonstrated the biocompatibility of PVP-Alg-CHA (95 ± 5% cell viability), and DPSC located inside the pores. It was concluded that the PVP-Alg-CHA porous composite is promising for dentistry applications
    corecore