12 research outputs found
Radiocarbon ages, δ¹³C values and rare earth element content of sediment cores BP00-23/07 and BP00-07/06
Two bottom sediment cores (BP00-23/7 and BP00-7/6) recovered from the Yenisei transect in the southern Kara Sea are described. Data on their grain size composition, clay and heavy mineral assemblages, and distribution of a large group of chemical elements are presented. Radiocarbon dates based on AMS C-14 method suggest the Holocene age of sediments in the cores. Literature data on physical properties and foraminifers have also been analyzed. The facies affiliation of the lithostratigraphic subdivisions has been unraveled. History of the Yenisei River runoff in the Holocene has been reconstructed on the basis of different indicators
Composition and accumulation rates of bottom sediments from Core ASV16-1372, Voring Plateau
Based on sedimentological, mineralogical, geochemical, and micropaleontological data on comprehensively investigated Core ASV16-1372, Late Pleistocene - Holocene sedimentation history is reconstructed for the Voring marginal plateau (continental margin of the Norwegian Sea). An age model constructed is based on correlation with several adjacent cores, for which AMS radiocarbon datings are available. Lithostratigraphic correlation made it possible to compare stratigraphic division of Core ASV16-1372 with other cores sampled on the Voring Plateau and the shelf and continental slope off Central Norway. It is concluded that compositional and structural features of bottom sediments are correlated with paleoclimatic and paleoceanographic changes, variations in provenances, as well as agents and pathways of sedimentary material transport
Mineralogical composition of the upper 300m of Hole 302-M0002A
During the Arctic Coring Expedition (ACEX), a 428-m-thick sequence of Upper Cretaceous to Quaternary sediments was penetrated. The mineralogical composition of the upper 300 m of this sequence is presented here for the first time. Heavy and clay mineral associations indicate a major and consistent shift in provenance, from the Barents-Kara - western Laptev Sea region, characterized by presence of common clinopyroxene, to the eastern Laptev-East Siberian seas in the upper part of the section, characterized by common hornblende (amphibole). Sea ice originating from the latter source region must have survived at least one summer melt cycle in order to reach the ACEX drill site, if considering modern sea ice trajectories and velocities. This shift in mineral assemblages probably represents the onset of a perennial sea ice cover in the Arctic Ocean, which occurred at about 13 Ma, thus suggesting a coeval freeze in the Arctic and Antarctic regions