4 research outputs found

    Pneumocystis pneumonia mimicking COVID-19

    Get PDF
    Background. The new coronavirus infection COVID-19 caused by a SARS-CoV-2 zoonotic beta-coronavirus has radically transformed the conventional concept of the immune systems participation in an infectious process. The successful application of anti-interleukin monoclonal antibodies and inhibitors of Janus kinases in COVID-19, traditionally contraindicated in infections, testifies that the immune response to the pathogen may be more dangerous than the infection itself. However, when prescribing the immunosuppressive therapy to COVID-19 patients, one should not forget that some interstitial pneumonias caused by opportunistic microflora, such as Pneumocystis Jirovecii, have similar clinical and radiological manifestations. Clinical case description. A 29-year old female patient was admitted to the infectious disease hospital with complaints of a febrile temperature, shortness of breath at rest, low-productive cough, pronounced weakness. She had been ill for 14 days, the SARS-CoV-2 RNA was detected at the pre-hospital stage. After the admission, a chest CT scan was performed showing a subtotal lung damage with the characteristic radiological manifestations of interstitial pneumonia in the form of ground glass opacity regions, presence of air traps, that was initially attributed to bilateral viral pneumonia (СТ-3/4). The subsequent examination confirming primary HIV infection and a sputum analysis positive for P. Jirovecii allowed us to establish a correct clinical diagnosis of pneumocystis pneumonia against the background of HIV infection and a mild COVID-19 course, administer a co-trimoxazole therapy and obtain a favorable outcome. Conclusion. This observation demonstrates the necessity of applying an individual approach to each patient admitted to a COVID hospital and performing a differential diagnosis, even when COVID-19 is confirmed by the laboratory work, in order not to miss other interstitial pneumonias, in particular, pneumocystis pneumonia appearing against the background on immunodeficiency

    The capabilities of MRI in the lung lesions diagnosis in patients with COVID-19

    Get PDF
    Backgrounds. The imaging diagnostic methods have become particularly important during the COVID-19 pandemic, and computed tomography of the thorax (CT) is considered to be the gold standard in the cases of lung lesions and in the evaluation of changes in the pulmonary parenchyma in dynamics. However, it is well known that the CT method is associated with a significant radiation dose, especially given the fact that repeated, and often reiterated control CT-tests are required for many patients who suffer COVID-19 or have recovered from the disease. In order to reduce the potential radiation exposure and receive some additional diagnostic information, we applied the magnetic resonance imaging (MRI) method for viral pneumonia at the FRCC of FMBA of Russia, which was redesigned as a center for the treatment of patients with COVID-19. Aim. The aim is to evaluate the possibilities of the lung MRI in the diagnosis of pneumonia caused by the new coronaviral infection, to describe the specific symptoms of lung parenchyma lesions using various pulse sequences, and compare the results with the CT data. Methods. The article is based on the practice of applying high-resolution computed tomography (HRCT) and MRI of the lungs in 15 patients with pneumonia caused by COVID-19. Results. The comparison of the HRCT data and T2-weighted images (T2-WI) in 100% of cases revealed a complete correlation in the size, number and position of the lung tissue areas with reduced air saturation by the type of ground glass opacity and the consolidation zones. The level of linear and reticular changes detection in MRI reached 73.3%. Free fluid in the pleural cavities in a moderate and minimal volume was revealed on T2-WI in 12 patients (80% of cases), while it was not diagnosed by HRCT in all the cases. The mediastinal and intra-pulmonary lymph nodes were visualized distinctly. In T1-weighted images (T1-WI), the areas of ground glass opacity were either not visualized, or were represented by smaller areas when compared to the HRCV data and reticular changes were also displayed worse. In 73.3% cases, the consolidation zones on T1-WI fully corresponded or were almost similar in characteristics to changes visualized by HRCT. At the same time, it is worth noting that performing T1-WI out phase more clearly displayed the consolidation zones when compared to T1-WI in phase. Foci of increased signal on T1-WI with fat suppression were registered in 3 patients against the background of consolidation sites which in comparison with the data of T2-WI, would suggest the presence of parenchymal hemorrhages. Conclusion. Lung MRI is a fairly sensitive method for identifying areas of ground glass opacity and consolidation, reticular changes and lymphadenopathy, and is superior to HRCT when displaying pleural effusion. Chest MRI may be recommended as a diagnostic method for suspected pulmonary COVID-19 lesion in children and pregnant women in order to exclude ionizing radiation exposure, as well as for monitoring the condition of lung tissue after viral pneumonia, if the patient was previously exposed to a high radiation dose

    Long-term results of microvascular decompression with video endoscopy in the treatment of patients with atypical trigeminal neuralgia

    Get PDF
    Background: The incidence of atypical trigeminal neuralgia (aNTN) varies from 1 to 7 per 100,000 population per year. The main cause of its development is compression of the trigeminal nerve (TN) root by a vein and/or artery in the cerebellar cistern. To date, the final tactics of treatment for patients with aNTN has not been specified. The effectiveness of conservative methods of therapy does not exceed 50%. The aim of this study was to evaluate the results of microvascular decompression using video endoscopy in the treatment of patients with atypical trigeminal neuralgia. Methods: In the period from 2014 to 2021, 34 patients with aNTN were operated on, of which 18 (53%) patients had neuropathic pain (more than 4 points on the DN4 scale), and 15 (44%) patients had transformation of classical trigeminal neuralgia into atypical neuralgia. The conservative therapy (carbamazepine, gabapentin, pregabalin), administered to all the patients in the preoperative period, was not accompanied by a significant relief of pain syndrome. The maximum intensity of pain upon admission to the hospital was, according to the visual analog scale (VAS), 10 points, according to the BNI (Barrow Neurological Institute) Pain Intensity Scale V (severe, persistent pain). All the patients underwent microvascular decompression of the trigeminal nerve root with the use of Teflon; in 12 (35%) patients, in addition to microscopy, video endoscopy was used. The average follow-up period after the surgery was 3.41.7 years (from 1 to 5 years). Results: In all (100%) patients, the pain was completely eliminated (BNI I) after the surgery. A total five-year excellent and good outcome of the disease on the J. Miller and BNI scale (I -II) was noted in 80% (n=27) of patients with aNTN. The risk of pain recurrence after microvascular decompression was 14% (n=3) in the first three years, and 34% (n=4) after 5 years. The use of video endoscopy made it possible to identify the blood vessels compressing the root of the trigeminal nerve with a minimal displacement of the cerebellum and cranial nerves when visualizing the neurovascular conflict. Conclusion: The microvascular decompression method with video endoscopy is effective in the treatment of patients with aNTN

    Problems of personnel irradiation in modern medical technologies

    Get PDF
    BACKGROUND: The widespread use of radiation sources in medical practice (cardio-endovascular surgery, endoscopy, traumatology, urology, neurosurgery, dentistry, and radioisotope diagnostics departments) leads to irradiation of the lens of the eye and the skin of the hands. The introduction of new recommendations by the IAEA to reduce the limit of the annual equivalent dose to the lens (20 mSv) has led to an inaccurate dose assessment based on the effective dose. AIM: To analyze approaches and assess equivalent doses of irradiation of the lens of the eye and skin of the hands of medical personnel during various diagnostic studies under the influence of X-rays and radiopharmaceuticals studies and to compare the results obtained with previously published data. MATERIALS AND METHODS: Thermo-luminescent dosimetry was used. Dose assessment was performed by cardio-endovascular surgery, endoscopy, isotope diagnostics, dentistry, and urology personnel. RESULTS: The estimated annual equivalent doses to the lens of the eye for doctors of cardio-endovascular surgery departments, in most cases, ranging 3590 mSv, 619 mSv for the average medical staff (in some cases, the doctor [225 mSv] and the nurse [180 mSv]) and 4.59 mSv for the staff of the department of radioisotope diagnostics. The annual calculated equivalent doses to the skin of the hands for cardio-endovascular surgery personnel were 17100 and 24220 mSv for the staff working with radiopharmaceuticals. It is shown that the use of an estimate of the average dose per operation by cardio-endovascular surgery doctors, as a rule, inevitably leads to an excess of the equivalent dose to the lens of the eye after a certain number of operations. CONCLUSION: When a certain number of operations are exceeded (100200), equivalent doses to the eyes lens in cardio-endovascular surgery doctors above 20 mSv per year can be formed. At current radiation levels, a lesion of the eyes lens was found in a cardio-endovascular surgery doctor. The results indicate the need for further dosimetric measurements and epidemiological studies, based on which recommendations for radiation protection of the eyes lens and the skin of the hands of medical personnel working in low-intensity, scattered, gamma X-ray radiation can be developed
    corecore