279 research outputs found
On Generalized Records and Spatial Conjunction in Role Logic
We have previously introduced role logic as a notation for describing
properties of relational structures in shape analysis, databases and knowledge
bases. A natural fragment of role logic corresponds to two-variable logic with
counting and is therefore decidable. We show how to use role logic to describe
open and closed records, as well the dual of records, inverse records. We
observe that the spatial conjunction operation of separation logic naturally
models record concatenation. Moreover, we show how to eliminate the spatial
conjunction of formulas of quantifier depth one in first-order logic with
counting. As a result, allowing spatial conjunction of formulas of quantifier
depth one preserves the decidability of two-variable logic with counting. This
result applies to two-variable role logic fragment as well. The resulting logic
smoothly integrates type system and predicate calculus notation and can be
viewed as a natural generalization of the notation for constraints arising in
role analysis and similar shape analysis approaches.Comment: 30 pages. A version appears in SAS 200
On Spatial Conjunction as Second-Order Logic
Spatial conjunction is a powerful construct for reasoning about dynamically
allocated data structures, as well as concurrent, distributed and mobile
computation. While researchers have identified many uses of spatial
conjunction, its precise expressive power compared to traditional logical
constructs was not previously known. In this paper we establish the expressive
power of spatial conjunction. We construct an embedding from first-order logic
with spatial conjunction into second-order logic, and more surprisingly, an
embedding from full second order logic into first-order logic with spatial
conjunction. These embeddings show that the satisfiability of formulas in
first-order logic with spatial conjunction is equivalent to the satisfiability
of formulas in second-order logic. These results explain the great expressive
power of spatial conjunction and can be used to show that adding unrestricted
spatial conjunction to a decidable logic leads to an undecidable logic. As one
example, we show that adding unrestricted spatial conjunction to two-variable
logic leads to undecidability. On the side of decidability, the embedding into
second-order logic immediately implies the decidability of first-order logic
with a form of spatial conjunction over trees. The embedding into spatial
conjunction also has useful consequences: because a restricted form of spatial
conjunction in two-variable logic preserves decidability, we obtain that a
correspondingly restricted form of second-order quantification in two-variable
logic is decidable. The resulting language generalizes the first-order theory
of boolean algebra over sets and is useful in reasoning about the contents of
data structures in object-oriented languages.Comment: 16 page
The First-Order Theory of Sets with Cardinality Constraints is Decidable
We show that the decidability of the first-order theory of the language that
combines Boolean algebras of sets of uninterpreted elements with Presburger
arithmetic operations. We thereby disprove a recent conjecture that this theory
is undecidable. Our language allows relating the cardinalities of sets to the
values of integer variables, and can distinguish finite and infinite sets. We
use quantifier elimination to show the decidability and obtain an elementary
upper bound on the complexity.
Precise program analyses can use our decidability result to verify
representation invariants of data structures that use an integer field to
represent the number of stored elements.Comment: 18 page
On Role Logic
We present role logic, a notation for describing properties of relational
structures in shape analysis, databases, and knowledge bases. We construct role
logic using the ideas of de Bruijn's notation for lambda calculus, an encoding
of first-order logic in lambda calculus, and a simple rule for implicit
arguments of unary and binary predicates. The unrestricted version of role
logic has the expressive power of first-order logic with transitive closure.
Using a syntactic restriction on role logic formulas, we identify a natural
fragment RL^2 of role logic. We show that the RL^2 fragment has the same
expressive power as two-variable logic with counting C^2 and is therefore
decidable. We present a translation of an imperative language into the
decidable fragment RL^2, which allows compositional verification of programs
that manipulate relational structures. In addition, we show how RL^2 encodes
boolean shape analysis constraints and an expressive description logic.Comment: 20 pages. Our later SAS 2004 result builds on this wor
On the Theory of Structural Subtyping
We show that the first-order theory of structural subtyping of non-recursive
types is decidable. Let be a language consisting of function symbols
(representing type constructors) and a decidable structure in the
relational language containing a binary relation . represents
primitive types; represents a subtype ordering. We introduce the notion
of -term-power of , which generalizes the structure arising in
structural subtyping. The domain of the -term-power of is the set
of -terms over the set of elements of . We show that the
decidability of the first-order theory of implies the decidability of the
first-order theory of the -term-power of . Our decision procedure
makes use of quantifier elimination for term algebras and Feferman-Vaught
theorem. Our result implies the decidability of the first-order theory of
structural subtyping of non-recursive types.Comment: 51 page. A version appeared in LICS 200
Quantifier-Free Boolean Algebra with Presburger Arithmetic is NP-Complete
Boolean Algebra with Presburger Arithmetic (BAPA) combines1) Boolean algebras of sets of uninterpreted elements (BA)and 2) Presburger arithmetic operations (PA). BAPA canexpress the relationship between integer variables andcardinalities of unbounded finite sets and can be used toexpress verification conditions in verification of datastructure consistency properties.In this report I consider the Quantifier-Free fragment ofBoolean Algebra with Presburger Arithmetic (QFBAPA).Previous algorithms for QFBAPA had non-deterministicexponential time complexity. In this report I show thatQFBAPA is in NP, and is therefore NP-complete. My resultyields an algorithm for checking satisfiability of QFBAPAformulas by converting them to polynomially sized formulasof quantifier-free Presburger arithmetic. I expect thisalgorithm to substantially extend the range of QFBAPAproblems whose satisfiability can be checked in practice
An Instantiation-Based Approach for Solving Quantified Linear Arithmetic
This paper presents a framework to derive instantiation-based decision
procedures for satisfiability of quantified formulas in first-order theories,
including its correctness, implementation, and evaluation. Using this framework
we derive decision procedures for linear real arithmetic (LRA) and linear
integer arithmetic (LIA) formulas with one quantifier alternation. Our
procedure can be integrated into the solving architecture used by typical SMT
solvers. Experimental results on standardized benchmarks from model checking,
static analysis, and synthesis show that our implementation of the procedure in
the SMT solver CVC4 outperforms existing tools for quantified linear
arithmetic
- …