4 research outputs found
New Titanium(IV)-Alkoxide Complexes Bearing Bidentate OO Ligand with the Camphyl Linker as Catalysts for High-Temperature Ethylene Polymerization and Ethylene/1-Octene Copolymerization
In order to increase the thermal stability of olefin polymerization precatalysts, new titanium(IV) complexes with diolate ligands differing in the degree of steric hindrances were synthesized from readily available precursor (±)camphor. The structures of the complexes 1–2 were established by X-ray diffraction. Complexes 1–4 in the presence of an activator {EtnAlCl3-n + Bu2Mg} catalyzed the synthesis of UHMWPE with an Mv up to 10 million and a productivity of up to 3300 kg/molTi·atm·h. The obtained polymers are obviously characterized by a low density of macromolecular entanglement, which makes it possible to use the solid-phase method for their processing. The mechanical characteristics of the oriented UHMWPE films had a breaking strength up to 2.7 GPa and an elastic modulus of up to 151 GPa. The precatalysts 1–4 were also active in ethylene/1-octene copolymerization. The comonomer content was in the range of 1.4–4.6 mol%. The use of a rigid linker and an increase in the steric load of the diolate complexes ensured the thermal stability of the catalytic system in the range of 50–70 °C
Effect of Activator and Outgoing Ligand Nature on the Catalytic Behavior of Bis(phenoxy-imine) Ti(IV) Complexes in the Polymerization of Ethylene and Its Copolymerization with Higher Olefins
A series of bis(phenoxy-imine) (FI) titanium(IV) and zirconium(IV) complexes have been synthesized. The effect of the nature of the activator (MAO, combinations EtnAlCl3-n + Bu2Mg and iBu3Al + [Ph3C]+[B(C6F5)4]−) on the catalytic activity and properties of the resulting polymers was studied. It was found that Ti-Fi complexes, despite the nature of the outgoing ligands (Cl or iPrO) in the presence of Al/Mg activators, effectively catalyze the polymerization of ethylene (with the formation of UHMWPE); copolymerization of ethylene with 1-octene (with the formation of ultra-high molecular weight copolymers); and the ternary copolymerization of ethylene, propylene and 5-vinyl-2-norbornene (with the formation of polyolefin elastomers). It has been shown that Zr-FI complexes are not activated by these Al/Mg compositions. The resulting UHMWPE can be processed by a solventless method into high-strength and high-modulus oriented films; however, their mechanical characteristics do not exceed those obtained using MAO