21 research outputs found

    Investigation of Starch Binding Domains for Improvement of Starch degradation

    Get PDF
    Dansk resume Stivelse er planternes primære energilager og et vigtigt næringsmiddel for pattedyr,svampe og bakterier. Stivelse deponeres i højt organiserede semi-krystallinske stivelseskorn i plastider: kloroplaster i blade (transitorisk stivelse) og amyloplaster i lagerorganer som knolde. Stivelse består udelukkende af α-1,4-bundne glukose enheder, som er organiseret enten som det stort set lineære amylose molekyle eller det forgrenede amylopektin molekyle, der indeholder α-1,6-bindinger. Rod og knold stivelse er karakteriseret ved et højt niveau af kovalent bundet fosfat. Denne stivelsesbundne fosfat har en stor effekt på både stivelsens fysiske egenskaber samt på stivelsesnedbrydning i planterne. Inkludering af fosfatestre påvirker de industrielle egenskaber, og medfører forskellige meget ønskværdige egenskaber. Enzymet der kan inkorporere fosfat grupper i stivelse er en glucan, water dikinase (GWD). GWD kan fosforylere i C-3 og C-6 positionen i glukose enhederne i stivelse, ved en dikinase reaktion der anvender β-fosfat fra ATP. Mutanter i Arabidopsis thaliana GWD1 udviser en stivelses overskud fænotype med en lavere stivelses nedbrydnings rate, hvilket påviser en forbindelse mellem stivelses fosforylering og stivelses nedbrydning. To homologe proteiner er blevet identificeret i Arabidopsis genomet, navngivet AtGWD2 og AtGWD3. Mutationer i AtGWD3 resulterede også i en stivelses overskud fænotype, som set hos AtGWD1, hvilket tyder på AtGWD3 også er involveret i stivelses nedbrydning. AtGWD3 er lokaliseret i kloroplasterne og substrat analyser viste at oprenset AtGWD3 udviser præference for fosforyleret α-glucaner og katalysere udelukkende fosforylering i C-3 positionen i glukose enhederne. Disse resultater tyder på at AtGWD1 og AtGWD3 arbejder sammen i en efterfølgende fosforyleringskaskade, som er nødvendig for nedbrydning af stivelse. Glycosyl hydrolasers nedbrydning af rå stivelse er relativ ineffektiv, da polysacharrid kæderne ofte ikke er blotlagte og tilgængelige for enzymernes aktive site. Mange stivelses nedbrydende enzymer har ekstra bindings sites i det katalytiske domæne eller på separate stivelsesbindings domæner (SBD) som muliggør denne interaktion. SBDer er klassificeret i CAZy databasen i forskellige kulhydrat bindings module (CBM)familier. AtGWD1 og AtGWD2 har et tandem repeat af SBDer som tilhører familie CBM45 og AtGWD3 har et enkelt SBD fra familie CBM20. Alle er N-terminalt lokaliseret. Formålet med dette PhD projekt har været at undersøge og karakterisere GWD3-SBDs biokemiske funktion. GWD3-SBD er blevet udtrykt succesfuldt som et isoleret domæne i E. coli og oprenset. Øget stabilitet af domænet blev opnået efter yderligere aminosyrer blev inddraget i den kodende sekvens. Binding til 5 stivelseskorn var svært at måle, og det skyldes højst sandsynligt konsekvensen af den højt specialiserede rolle som GWD3 spiller i stivelses fosforyleringen. Enzymet er reguleret i kloroplasten og kun meget specialiserede områder på stivelses kornene er egnede for fosforylering i C-3 positionen og det er svært at finde forhold, hvor alle parametre er optimale. Binding til små ligosaccharider, som β-cyclodextrins (β-CD) er blevet bestemt med Surface plasmon resonance og domænet tilhører en gruppe af lav affinitets bindere, denne kategori inkluderer ikke-hydrolyserende enzymer. Den overordnede struktur fundet hos CBM20 er ifølge en homologimodellering bevaret i GWD3-SBD og bindings site 1, som er involveret i initial binding er vel bevaret både i strukturen og på sekvens niveau. Sammenlignet med andre karakteriserede CBM20, så har GWD3-SBD et mindre loop i området omkring bindings site 2. Dette loop er under substrat binding i andre CBM20 meget fleksibelt og dette kan forklare den lavere bindings kapacitet fundet hos GWD3- SBD. Fluorescens mærkning og confocal laser scanning microskopi er blevet anvendt som en metode til at visualisere SBD og hydrolyserende enzymers, f.eks. glucoamylase og α-amylases binding til stivelseskorn. Denne metode blev anvendt sammen med transient ekspression af en yellow-fluorescent protein YFP-GWD3-SBD fusion i tobaksplanter for at verificeres stivelsesbinding

    The involvement of R1 and potato starch branching enzyme I in the phosphorylation of starch

    No full text
    corecore