50 research outputs found
Higher moments of spin-spin correlation functions for the ferromagnetic random bond Potts model
Using CFT techniques, we compute the disorder-averaged p-th power of the
spin-spin correlation function for the ferromagnetic random bonds Potts model.
We thus generalize the calculation of Dotsenko, Dotsenko and Picco, where the
case p=2 was considered. Perturbative calculations are made up to the second
order in epsilon (epsilon being proportional to the central charge deviation of
the pure model from the Ising model value). The explicit dependence of the
correlation function on gives an upper bound for the validity of the
expansion, which seems to be valid, in the three-states case, only if p-alpha in
final formula
Critical behavior of disordered systems with replica symmetry breaking
A field-theoretic description of the critical behavior of weakly disordered
systems with a -component order parameter is given. For systems of an
arbitrary dimension in the range from three to four, a renormalization group
analysis of the effective replica Hamiltonian of the model with an interaction
potential without replica symmetry is given in the two-loop approximation. For
the case of the one-step replica symmetry breaking, fixed points of the
renormalization group equations are found using the Pade-Borel summing
technique. For every value , the threshold dimensions of the system that
separate the regions of different types of the critical behavior are found by
analyzing those fixed points. Specific features of the critical behavior
determined by the replica symmetry breaking are described. The results are
compared with those obtained by the -expansion and the scope of the
method applicability is determined.Comment: 18 pages, 2 figure
Stability of critical behaviour of weakly disordered systems with respect to the replica symmetry breaking
A field-theoretic description of the critical behaviour of the weakly
disordered systems is given. Directly, for three- and two-dimensional systems a
renormalization analysis of the effective Hamiltonian of model with replica
symmetry breaking (RSB) potentials is carried out in the two-loop
approximation. For case with 1-step RSB the fixed points (FP's) corresponding
to stability of the various types of critical behaviour are identified with the
use of the Pade-Borel summation technique. Analysis of FP's has shown a
stability of the critical behaviour of the weakly disordered systems with
respect to RSB effects and realization of former scenario of disorder influence
on critical behaviour.Comment: 10 pages, RevTeX. Version 3 adds the functions for arbitrary
dimension of syste
Numerical Results For The 2D Random Bond 3-state Potts Model
We present results of a numerical simulation of the 3-state Potts model with
random bond, in two dimension. In particular, we measure the critical exponent
associated to the magnetization and the specific heat. We also compare these
exponents with recent analytical computations.Comment: 9 pages, latex, 3 Postscript figure
Patterned and Disordered Continuous Abelian Sandpile Model
We study critical properties of the continuous Abelian sandpile model with
anisotropies in toppling rules that produce ordered patterns on it. Also we
consider the continuous directed sandpile model perturbed by a weak quenched
randomness and study critical behavior of the model using perturbative
conformal field theory and show the model has a new random fixed point.Comment: 11 Pages, 6 figure
Self-averaging in the random 2D Ising ferromagnet
We study sample-to-sample fluctuations in a critical two-dimensional Ising
model with quenched random ferromagnetic couplings. Using replica calculations
in the renormalization group framework we derive explicit expressions for the
probability distribution function of the critical internal energy and for the
specific heat fluctuations. It is shown that the disorder distribution of
internal energies is Gaussian, and the typical sample-to-sample fluctuations as
well as the average value scale with the system size like . In contrast, the specific heat is shown to be self-averaging with a
distribution function that tends to a -peak in the thermodynamic limit
. While previously a lack of self-averaging was found for the
free energy, we here obtain results for quantities that are directly measurable
in simulations, and implications for measurements in the actual lattice system
are discussed.Comment: 12 pages, accepted versio
Critical Behavior of Coupled q-state Potts Models under Weak Disorder
We investigate the effect of weak disorder on different coupled -state
Potts models with using two loops renormalisation group. This study
presents new examples of first order transitions driven by randomness. We found
that weak disorder makes the models decouple. Therefore, it appears that no
relations emerge, at a perturbation level, between the disordered -state Potts model and the two disordered , -state Potts models
(), despite their central charges are similar according to recent
numerical investigations. Nevertheless, when two -state Potts models are
considered (), the system remains always driven in a strong coupling
regime, violating apparently the Imry-Wortis argument.Comment: 7 pages + 1 PS figure (Latex
Non-perturbative phenomena in the three-dimensional random field Ising model
The systematic approach for the calculations of the non-perturbative
contributions to the free energy in the ferromagnetic phase of the random field
Ising model is developed. It is demonstrated that such contributions appear due
to localized in space instanton-like excitations. It is shown that away from
the critical region such instanton solutions are described by the set of the
mean-field saddle-point equations for the replica vector order parameter, and
these equations can be formally reduced to the only saddle-point equation of
the pure system in dimensions (D-2). In the marginal case, D=3, the
corresponding non-analytic contribution is computed explicitly. Nature of the
phase transition in the three-dimensional random field Ising model is
discussed.Comment: 12 page
The Wandering Exponent of a One-Dimensional Directed Polymer in a Random Potential with Finite Correlation Radius
We consider a one-dimensional directed polymer in a random potential which is
characterized by the Gaussian statistics with the finite size local
correlations. It is shown that the well-known Kardar's solution obtained
originally for a directed polymer with delta-correlated random potential can be
applied for the description of the present system only in the high-temperature
limit. For the low temperature limit we have obtained the new solution which is
described by the one-step replica symmetry breaking. For the mean square
deviation of the directed polymer of the linear size L it provides the usual
scaling with the wandering exponent z = 2/3 and the
temperature-independent prefactor.Comment: 14 pages, Late
Critical behavior of the pure and random-bond two-dimensional triangular Ising ferromagnet
We investigate the effects of quenched bond randomness on the critical
properties of the two-dimensional ferromagnetic Ising model embedded in a
triangular lattice. The system is studied in both the pure and disordered
versions by the same efficient two-stage Wang-Landau method. In the first part
of our study we present the finite-size scaling behavior of the pure model, for
which we calculate the critical amplitude of the specific heat's logarithmic
expansion. For the disordered system, the numerical data and the relevant
detailed finite-size scaling analysis along the lines of the two well-known
scenarios - logarithmic corrections versus weak universality - strongly support
the field-theoretically predicted scenario of logarithmic corrections. A
particular interest is paid to the sample-to-sample fluctuations of the random
model and their scaling behavior that are used as a successful alternative
approach to criticality.Comment: 10 pages, 8 figures, slightly revised version as accepted for
publication in Phys. Rev.