50 research outputs found

    Higher moments of spin-spin correlation functions for the ferromagnetic random bond Potts model

    Full text link
    Using CFT techniques, we compute the disorder-averaged p-th power of the spin-spin correlation function for the ferromagnetic random bonds Potts model. We thus generalize the calculation of Dotsenko, Dotsenko and Picco, where the case p=2 was considered. Perturbative calculations are made up to the second order in epsilon (epsilon being proportional to the central charge deviation of the pure model from the Ising model value). The explicit dependence of the correlation function on pp gives an upper bound for the validity of the expansion, which seems to be valid, in the three-states case, only if p-alpha in final formula

    Critical behavior of disordered systems with replica symmetry breaking

    Full text link
    A field-theoretic description of the critical behavior of weakly disordered systems with a pp-component order parameter is given. For systems of an arbitrary dimension in the range from three to four, a renormalization group analysis of the effective replica Hamiltonian of the model with an interaction potential without replica symmetry is given in the two-loop approximation. For the case of the one-step replica symmetry breaking, fixed points of the renormalization group equations are found using the Pade-Borel summing technique. For every value pp, the threshold dimensions of the system that separate the regions of different types of the critical behavior are found by analyzing those fixed points. Specific features of the critical behavior determined by the replica symmetry breaking are described. The results are compared with those obtained by the ϵ\epsilon-expansion and the scope of the method applicability is determined.Comment: 18 pages, 2 figure

    Stability of critical behaviour of weakly disordered systems with respect to the replica symmetry breaking

    Full text link
    A field-theoretic description of the critical behaviour of the weakly disordered systems is given. Directly, for three- and two-dimensional systems a renormalization analysis of the effective Hamiltonian of model with replica symmetry breaking (RSB) potentials is carried out in the two-loop approximation. For case with 1-step RSB the fixed points (FP's) corresponding to stability of the various types of critical behaviour are identified with the use of the Pade-Borel summation technique. Analysis of FP's has shown a stability of the critical behaviour of the weakly disordered systems with respect to RSB effects and realization of former scenario of disorder influence on critical behaviour.Comment: 10 pages, RevTeX. Version 3 adds the β\beta functions for arbitrary dimension of syste

    Numerical Results For The 2D Random Bond 3-state Potts Model

    Full text link
    We present results of a numerical simulation of the 3-state Potts model with random bond, in two dimension. In particular, we measure the critical exponent associated to the magnetization and the specific heat. We also compare these exponents with recent analytical computations.Comment: 9 pages, latex, 3 Postscript figure

    Patterned and Disordered Continuous Abelian Sandpile Model

    Full text link
    We study critical properties of the continuous Abelian sandpile model with anisotropies in toppling rules that produce ordered patterns on it. Also we consider the continuous directed sandpile model perturbed by a weak quenched randomness and study critical behavior of the model using perturbative conformal field theory and show the model has a new random fixed point.Comment: 11 Pages, 6 figure

    Self-averaging in the random 2D Ising ferromagnet

    Get PDF
    We study sample-to-sample fluctuations in a critical two-dimensional Ising model with quenched random ferromagnetic couplings. Using replica calculations in the renormalization group framework we derive explicit expressions for the probability distribution function of the critical internal energy and for the specific heat fluctuations. It is shown that the disorder distribution of internal energies is Gaussian, and the typical sample-to-sample fluctuations as well as the average value scale with the system size LL like Llnln(L)\sim L \ln\ln(L). In contrast, the specific heat is shown to be self-averaging with a distribution function that tends to a δ\delta-peak in the thermodynamic limit LL \to \infty. While previously a lack of self-averaging was found for the free energy, we here obtain results for quantities that are directly measurable in simulations, and implications for measurements in the actual lattice system are discussed.Comment: 12 pages, accepted versio

    Critical Behavior of Coupled q-state Potts Models under Weak Disorder

    Full text link
    We investigate the effect of weak disorder on different coupled qq-state Potts models with q4q\le 4 using two loops renormalisation group. This study presents new examples of first order transitions driven by randomness. We found that weak disorder makes the models decouple. Therefore, it appears that no relations emerge, at a perturbation level, between the disordered q1×q2q_1\times q_2-state Potts model and the two disordered q1q_1, q2q_2-state Potts models (q1q2q_1\ne q_2), despite their central charges are similar according to recent numerical investigations. Nevertheless, when two qq-state Potts models are considered (q>2q>2), the system remains always driven in a strong coupling regime, violating apparently the Imry-Wortis argument.Comment: 7 pages + 1 PS figure (Latex

    Non-perturbative phenomena in the three-dimensional random field Ising model

    Full text link
    The systematic approach for the calculations of the non-perturbative contributions to the free energy in the ferromagnetic phase of the random field Ising model is developed. It is demonstrated that such contributions appear due to localized in space instanton-like excitations. It is shown that away from the critical region such instanton solutions are described by the set of the mean-field saddle-point equations for the replica vector order parameter, and these equations can be formally reduced to the only saddle-point equation of the pure system in dimensions (D-2). In the marginal case, D=3, the corresponding non-analytic contribution is computed explicitly. Nature of the phase transition in the three-dimensional random field Ising model is discussed.Comment: 12 page

    The Wandering Exponent of a One-Dimensional Directed Polymer in a Random Potential with Finite Correlation Radius

    Full text link
    We consider a one-dimensional directed polymer in a random potential which is characterized by the Gaussian statistics with the finite size local correlations. It is shown that the well-known Kardar's solution obtained originally for a directed polymer with delta-correlated random potential can be applied for the description of the present system only in the high-temperature limit. For the low temperature limit we have obtained the new solution which is described by the one-step replica symmetry breaking. For the mean square deviation of the directed polymer of the linear size L it provides the usual scaling L2zL^{2z} with the wandering exponent z = 2/3 and the temperature-independent prefactor.Comment: 14 pages, Late

    Critical behavior of the pure and random-bond two-dimensional triangular Ising ferromagnet

    Full text link
    We investigate the effects of quenched bond randomness on the critical properties of the two-dimensional ferromagnetic Ising model embedded in a triangular lattice. The system is studied in both the pure and disordered versions by the same efficient two-stage Wang-Landau method. In the first part of our study we present the finite-size scaling behavior of the pure model, for which we calculate the critical amplitude of the specific heat's logarithmic expansion. For the disordered system, the numerical data and the relevant detailed finite-size scaling analysis along the lines of the two well-known scenarios - logarithmic corrections versus weak universality - strongly support the field-theoretically predicted scenario of logarithmic corrections. A particular interest is paid to the sample-to-sample fluctuations of the random model and their scaling behavior that are used as a successful alternative approach to criticality.Comment: 10 pages, 8 figures, slightly revised version as accepted for publication in Phys. Rev.
    corecore