2 research outputs found

    White-light toxicity, resulting from systemically administered 5-aminolevulinic acid, under normal operating conditions

    Get PDF
    This study has investigated damage to the intraperitoneal organs of the rat after systemic (intraperitoneal and intravenous) administration of low doses of 5-aminolevulinic acid (ALA) and illumination with a standard white-light operating-room (o.r.) lamp. The study has been done within the framework of a larger study in which the possibility of using ALA for localization of small-volume macroscopically non-visible peritoneal metastasis of ovarian tumors is being investigated. Fluorescence diagnostics are done in addition to the standard staging and localization procedures, either through a laparoscope or during laparotomy. In these circumstances, fluorescence diagnostics involve some risk of photosensitization of critical organs since a broad-band (o.r.) light source is used during the surgical procedures for illumination of the operating area. The drug dose and the time interval between administration of ALA and illumination are varied and normal tissues are examined both macroscopically and microscopically for damage. A relationship is demonstrated between the maximum tolerable dose (MTD) of ALA (defined as the dose that does not cause any tissue damage) and the time interval between administration and illumination. The white light that is used for illumination of the operating area is sufficient to induce damage to the peritoneal organs at relatively low ALA doses. The MDTs for 2, 6 and 16 h intervals are found to be respectively 1, 10 and 100 mg kg-1. The results are similar for both intraperitoneal and intravenous administration

    Partially methylated domains are hypervariable in breast cancer and fuel widespread CpG island hypermethylation

    Get PDF
    Global loss of DNA methylation and CpG island (CGI) hypermethylation are key epigenomic aberrations in cancer. Global loss manifests itself in partially methylated domains (PMDs) which extend up to megabases. However, the distribution of PMDs within and between tumor types, and their effects on key functional genomic elements including CGIs are poorly defined. We comprehensively show that loss of methylation in PMDs occurs in a large fraction of the genome and represents the prime source of DNA methylation variation. PMDs are hypervariable in methylation level, size and distribution, and display elevated mutation rates. They impose intermediate DNA methylation levels incognizant of functional genomic elements including CGIs, underpinning a CGI methylator phenotype (CIMP). Repression effects on tumor suppressor genes are negligible as they are generally excluded from PMDs. The genomic distribution of PMDs reports tissue-of-origin and may represent tissue-specific silent regions which tolerate instability at the epigenetic, transcriptomic and genetic level
    corecore