5 research outputs found
Metabolomics Profile in Depression:A Pooled Analysis of 230 Metabolic Markers in 5283 Cases With Depression and 10,145 Controls
Background: Depression has been associated with metabolic alterations, which adversely impact cardiometabolic health. Here, a comprehensive set of metabolic markers, predominantly lipids, was compared between depressed and nondepressed persons. Methods: Nine Dutch cohorts were included, comprising 10,145 control subjects and 5283 persons with depression, established with diagnostic interviews or questionnaires. A proton nuclear magnetic resonance metabolomics platform provided 230 metabolite measures: 51 lipids, fatty acids, and low-molecular-weight metabolites; 98 lipid composition and particle concentration measures of lipoprotein subclasses; and 81 lipid and fatty acids ratios. For each metabolite measure, logistic regression analyses adjusted for gender, age, smoking, fasting status, and lipid-modifying medication were performed within cohort, followed by random-effects meta-analyses. Results: Of the 51 lipids, fatty acids, and low-molecular-weight metabolites, 21 were significantly related to depression (false discovery rate q <.05). Higher levels of apolipoprotein B, very-low-density lipoprotein cholesterol, triglycerides, diglycerides, total and monounsaturated fatty acids, fatty acid chain length, glycoprotein acetyls, tyrosine, and isoleucine and lower levels of high-density lipoprotein cholesterol, acetate, and apolipoprotein A1 were associated with increased odds of depression. Analyses of lipid composition indicators confirmed a shift toward less high-density lipoprotein and more very-low-density lipoprotein and triglyceride particles in depression. Associations appeared generally consistent across gender, age, and body mass index strata and across cohorts with depressive diagnoses versus symptoms. Conclusions: This large-scale meta-analysis indicates a clear distinctive profile of circulating lipid metabolites associated with depression, potentially opening new prevention or treatment avenues for depression and its associated cardiometabolic comorbidity
Gene co-expression analysis identifies brain regions and cell types involved in migraine pathophysiology
Migraine is a common disabling neurovascular brain disorder typically characterised by attacks of severe headache and associated with autonomic and neurological symptoms. Migraine is caused by an interplay of genetic and environmental factors. Genome-wide association studies (GWAS) have identified over a dozen genetic loci associated with migraine. Here, we integrated migraine GWAS data with high-resolution spatial gene expression data of normal adult brains from the Allen Human Brain Atlas to identify specific brain regions and molecular pathways that are possibly involved in migraine pathophysiology. To this end, we used two complementary methods. In GWAS data from 23,285 migraine cases and 95,425 controls, we first studied modules of co-expressed genes that were calculated based on human brain expression data for enrichment of genes that showed association with migraine. Enrichment of a migraine GWAS signal was found for five modules that suggest involvement in migraine pathophysiology of: (i) neurotransmission, protein catabolism and mitochondria in the cortex; (ii) transcription regulation in the cortex and cerebellum; and (iii) oligodendrocytes and mitochondria in subcortical areas. Second, we used the high-confidence genes from the migraine GWAS as a basis to construct local migraine-related co-expression gene networks. Signatures of all brain regions and pathways that were prominent in the first method also surfaced in the second method, thus providing support that these brain regions and pathways are indeed involved in migraine pathophysiology
Genome-Wide Association Study Identifies Risk Loci for Cluster Headache
Objective: This study was undertaken to identify susceptibility loci for cluster headache and obtain insights into relevant disease pathways. Methods: We carried out a genome-wide association study, where 852 UK and 591 Swedish cluster headache cases were compared with 5,614 and 1,134 controls, respectively. Following quality control and imputation, single variant association testing was conducted using a logistic mixed model for each cohort. The 2 cohorts were subsequently combined in a merged analysis. Downstream analyses, such as gene-set enrichment, functional variant annotation, prediction and pathway analyses, were performed. Results: Initial independent analysis identified 2 replicable cluster headache susceptibility loci on chromosome 2. A merged analysis identified an additional locus on chromosome 1 and confirmed a locus significant in the UK analysis on chromosome 6, which overlaps with a previously known migraine locus. The lead single nucleotide polymorphisms were rs113658130 (p = 1.92 × 10 −17, odds ratio [OR] = 1.51, 95% confidence interval [CI] = 1.37–1.66) and rs4519530 (p = 6.98 × 10 −17, OR = 1.47, 95% CI = 1.34–1.61) on chromosome 2, rs12121134 on chromosome 1 (p = 1.66 × 10 −8, OR = 1.36, 95% CI = 1.22–1.52), and rs11153082 (p = 1.85 × 10 −8, OR = 1.30, 95% CI = 1.19–1.42) on chromosome 6. Downstream analyses implicated immunological processes in the pathogenesis of cluster headache. Interpretation: We identified and replicated several genome-wide significant associations supporting a genetic predisposition in cluster headache in a genome-wide association study involving 1,443 cases. Replication in larger independent cohorts combined with comprehensive phenotyping, in relation to, for example, treatment response and cluster headache subtypes, could provide unprecedented insights into genotype–phenotype correlations and the pathophysiological pathways underlying cluster headache. ANN NEUROL 2021;90:193–202. </p
Genome-wide analysis of 102,084 migraine cases identifies 123 risk loci and subtype-specific risk alleles
Abstract
Migraine affects over a billion individuals worldwide but its genetic underpinning remains largely unknown. Here, we performed a genome-wide association study of 102,084 migraine cases and 771,257 controls and identified 123 loci, of which 86 are previously unknown. These loci provide an opportunity to evaluate shared and distinct genetic components in the two main migraine subtypes: migraine with aura and migraine without aura. Stratification of the risk loci using 29,679 cases with subtype information indicated three risk variants that seem specific for migraine with aura (in HMOX2, CACNA1A and MPPED2), two that seem specific for migraine without aura (near SPINK2 and near FECH) and nine that increase susceptibility for migraine regardless of subtype. The new risk loci include genes encoding recent migraine-specific drug targets, namely calcitonin gene-related peptide (CALCA/CALCB) and serotonin 1F receptor (HTR1F). Overall, genomic annotations among migraine-associated variants were enriched in both vascular and central nervous system tissue/cell types, supporting unequivocally that neurovascular mechanisms underlie migraine pathophysiology