21 research outputs found

    DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks

    Full text link
    Data movement between the CPU and main memory is a first-order obstacle against improving performance, scalability, and energy efficiency in modern systems. Computer systems employ a range of techniques to reduce overheads tied to data movement, spanning from traditional mechanisms (e.g., deep multi-level cache hierarchies, aggressive hardware prefetchers) to emerging techniques such as Near-Data Processing (NDP), where some computation is moved close to memory. Our goal is to methodically identify potential sources of data movement over a broad set of applications and to comprehensively compare traditional compute-centric data movement mitigation techniques to more memory-centric techniques, thereby developing a rigorous understanding of the best techniques to mitigate each source of data movement. With this goal in mind, we perform the first large-scale characterization of a wide variety of applications, across a wide range of application domains, to identify fundamental program properties that lead to data movement to/from main memory. We develop the first systematic methodology to classify applications based on the sources contributing to data movement bottlenecks. From our large-scale characterization of 77K functions across 345 applications, we select 144 functions to form the first open-source benchmark suite (DAMOV) for main memory data movement studies. We select a diverse range of functions that (1) represent different types of data movement bottlenecks, and (2) come from a wide range of application domains. Using NDP as a case study, we identify new insights about the different data movement bottlenecks and use these insights to determine the most suitable data movement mitigation mechanism for a particular application. We open-source DAMOV and the complete source code for our new characterization methodology at https://github.com/CMU-SAFARI/DAMOV.Comment: Our open source software is available at https://github.com/CMU-SAFARI/DAMO

    SynCron: Efficient Synchronization Support for Near-Data-Processing Architectures

    Get PDF
    Near-Data-Processing (NDP) architectures present a promising way to alleviate data movement costs and can provide significant performance and energy benefits to parallel applications. Typically, NDP architectures support several NDP units, each including multiple simple cores placed close to memory. To fully leverage the benefits of NDP and achieve high performance for parallel workloads, efficient synchronization among the NDP cores of a system is necessary. However, supporting synchronization in many NDP systems is challenging because they lack shared caches and hardware cache coherence support, which are commonly used for synchronization in multicore systems, and communication across different NDP units can be expensive. This paper comprehensively examines the synchronization problem in NDP systems, and proposes SynCron, an end-to-end synchronization solution for NDP systems. SynCron adds low-cost hardware support near memory for synchronization acceleration, and avoids the need for hardware cache coherence support. SynCron has three components: 1) a specialized cache memory structure to avoid memory accesses for synchronization and minimize latency overheads, 2) a hierarchical message-passing communication protocol to minimize expensive communication across NDP units of the system, and 3) a hardware-only overflow management scheme to avoid performance degradation when hardware resources for synchronization tracking are exceeded. We evaluate SynCron using a variety of parallel workloads, covering various contention scenarios. SynCron improves performance by 1.27\times on average (up to 1.78\times) under high-contention scenarios, and by 1.35\times on average (up to 2.29\times) under low-contention real applications, compared to state-of-the-art approaches. SynCron reduces system energy consumption by 2.08\times on average (up to 4.25\times).Comment: To appear in the 27th IEEE International Symposium on High-Performance Computer Architecture (HPCA-27

    Utopia: Fast and Efficient Address Translation via Hybrid Restrictive & Flexible Virtual-to-Physical Address Mappings

    Full text link
    Conventional virtual memory (VM) frameworks enable a virtual address to flexibly map to any physical address. This flexibility necessitates large data structures to store virtual-to-physical mappings, which leads to high address translation latency and large translation-induced interference in the memory hierarchy. On the other hand, restricting the address mapping so that a virtual address can only map to a specific set of physical addresses can significantly reduce address translation overheads by using compact and efficient translation structures. However, restricting the address mapping flexibility across the entire main memory severely limits data sharing across different processes and increases data accesses to the swap space of the storage device, even in the presence of free memory. We propose Utopia, a new hybrid virtual-to-physical address mapping scheme that allows both flexible and restrictive hash-based address mapping schemes to harmoniously co-exist in the system. The key idea of Utopia is to manage physical memory using two types of physical memory segments: restrictive and flexible segments. A restrictive segment uses a restrictive, hash-based address mapping scheme that maps virtual addresses to only a specific set of physical addresses and enables faster address translation using compact translation structures. A flexible segment employs the conventional fully-flexible address mapping scheme. By mapping data to a restrictive segment, Utopia enables faster address translation with lower translation-induced interference. Utopia improves performance by 24% in a single-core system over the baseline system, whereas the best prior state-of-the-art contiguity-aware translation scheme improves performance by 13%.Comment: To appear in 56th IEEE/ACM International Symposium on Microarchitecture (MICRO), 202

    ChargeCache: Reducing DRAM Latency by Exploiting Row Access Locality

    Get PDF
    22nd IEEE International Symposium on High-Performance Computer Architecture (HPCA) (2016 : Barcelona, SPAIN)DRAM latency continues to be a critical bottleneck for system performance. In this work, we develop a low-cost mechanism, called ChargeCache, that enables faster access to recently-accessed rows in DRAM, with no modifications to DRAM chips. Our mechanism is based on the key observation that a recently-accessed row has more charge and thus the following access to the same row can be performed faster. To exploit this observation, we propose to track the addresses of recently-accessed rows in a table in the memory controller. If a later DRAM request hits in that table, the memory controller uses lower timing parameters, leading to reduced DRAM latency. Row addresses are removed from the table after a specified duration to ensure rows that have leaked too much charge are not accessed with lower latency. We evaluate ChargeCache on a wide variety of workloads and show that it provides significant performance and energy benefits for both single-core and multi-core systems
    corecore