3 research outputs found
Identification of a root-specific glycosyltransferase from Arabidopsis and characterization of its promoter
A set of Ds-element enhancer trap lines of Arabidopsis thaliana was generated and screened for expression patterns leading to the identification of a line that showed root-specific expression of the bacterial uidA reporter gene encoding β-glucuronidase (GUS). The insertion of the Ds element was found to be immediately downstream to a glycosyltransferase gene At1g73160. Analysis of At1g73160 expression showed that it is highly root-specific. Isolation and characterization of the upstream region of the At1g73160 gene led to the definition of a 218 bp fragment that is sufficient to confer root-specific expression. Sequence analysis revealed that several regulatory elements were implicated in expression in root tissue. The promoter identified and characterized in this study has the potential to be applied in crop biotechnology for directing the root-specific expression of transgenes
AtMND1 is required for homologous pairing during meiosis in Arabidopsis
BACKGROUND: Pairing of homologous chromosomes at meiosis is an important requirement for recombination and balanced chromosome segregation among the products of meiotic division. Recombination is initiated by double strand breaks (DSBs) made by Spo11 followed by interaction of DSB sites with a homologous chromosome. This interaction requires the strand exchange proteins Rad51 and Dmc1 that bind to single stranded regions created by resection of ends at the site of DSBs and promote interactions with uncut DNA on the homologous partner. Recombination is also considered to be dependent on factors that stabilize interactions between homologous chromosomes. In budding yeast Hop2 and Mnd1 act as a complex to promote homologous pairing and recombination in conjunction with Rad51 and Dmc1. RESULTS: We have analyzed the function of the Arabidopsis orthologue of the budding yeast MND1 gene (AtMND1). Loss of AtMND1 did not affect normal vegetative development but caused fragmentation and missegregation of chromosomes in male and female meiosis, formation of inviable gametes, and sterility. Analysis of the Atmnd1 Atspo11-1 double mutant indicated that chromosome fragmentation in Atmnd1 was suppressed by loss of Atspo11-1. Fluorescence in situ hybridization (FISH) analysis showed that homologous pairing failed to occur and homologues remained apart throughout meiosis. AtMND1 showed strong expression in meiocytes as revealed by RNA in situs. CONCLUSION: We conclude that AtMND1 is required for homologous pairing and is likely to play a role in the repair of DNA double strand breaks during meiosis in Arabidopsis, thus showing conservation of function with that of MND1 during meiosis in yeast