6,146 research outputs found

    Distributed Representation of Geometrically Correlated Images with Compressed Linear Measurements

    Get PDF
    This paper addresses the problem of distributed coding of images whose correlation is driven by the motion of objects or positioning of the vision sensors. It concentrates on the problem where images are encoded with compressed linear measurements. We propose a geometry-based correlation model in order to describe the common information in pairs of images. We assume that the constitutive components of natural images can be captured by visual features that undergo local transformations (e.g., translation) in different images. We first identify prominent visual features by computing a sparse approximation of a reference image with a dictionary of geometric basis functions. We then pose a regularized optimization problem to estimate the corresponding features in correlated images given by quantized linear measurements. The estimated features have to comply with the compressed information and to represent consistent transformation between images. The correlation model is given by the relative geometric transformations between corresponding features. We then propose an efficient joint decoding algorithm that estimates the compressed images such that they stay consistent with both the quantized measurements and the correlation model. Experimental results show that the proposed algorithm effectively estimates the correlation between images in multi-view datasets. In addition, the proposed algorithm provides effective decoding performance that compares advantageously to independent coding solutions as well as state-of-the-art distributed coding schemes based on disparity learning

    Sentara Healthcare: A Case Study Series on Disruptive Innovation Within Integrated Health Systems

    Get PDF
    Examines how integration and ties with health plans, physicians, and hospitals helped protect against revenue volatility and enabled experimentation; factors that facilitate integration; innovative practices; lessons learned; and policy implications

    Joint Reconstruction of Multi-view Compressed Images

    Full text link
    The distributed representation of correlated multi-view images is an important problem that arise in vision sensor networks. This paper concentrates on the joint reconstruction problem where the distributively compressed correlated images are jointly decoded in order to improve the reconstruction quality of all the compressed images. We consider a scenario where the images captured at different viewpoints are encoded independently using common coding solutions (e.g., JPEG, H.264 intra) with a balanced rate distribution among different cameras. A central decoder first estimates the underlying correlation model from the independently compressed images which will be used for the joint signal recovery. The joint reconstruction is then cast as a constrained convex optimization problem that reconstructs total-variation (TV) smooth images that comply with the estimated correlation model. At the same time, we add constraints that force the reconstructed images to be consistent with their compressed versions. We show by experiments that the proposed joint reconstruction scheme outperforms independent reconstruction in terms of image quality, for a given target bit rate. In addition, the decoding performance of our proposed algorithm compares advantageously to state-of-the-art distributed coding schemes based on disparity learning and on the DISCOVER

    On Learning Mixtures of Well-Separated Gaussians

    Full text link
    We consider the problem of efficiently learning mixtures of a large number of spherical Gaussians, when the components of the mixture are well separated. In the most basic form of this problem, we are given samples from a uniform mixture of kk standard spherical Gaussians, and the goal is to estimate the means up to accuracy δ\delta using poly(k,d,1/δ)poly(k,d, 1/\delta) samples. In this work, we study the following question: what is the minimum separation needed between the means for solving this task? The best known algorithm due to Vempala and Wang [JCSS 2004] requires a separation of roughly min{k,d}1/4\min\{k,d\}^{1/4}. On the other hand, Moitra and Valiant [FOCS 2010] showed that with separation o(1)o(1), exponentially many samples are required. We address the significant gap between these two bounds, by showing the following results. 1. We show that with separation o(logk)o(\sqrt{\log k}), super-polynomially many samples are required. In fact, this holds even when the kk means of the Gaussians are picked at random in d=O(logk)d=O(\log k) dimensions. 2. We show that with separation Ω(logk)\Omega(\sqrt{\log k}), poly(k,d,1/δ)poly(k,d,1/\delta) samples suffice. Note that the bound on the separation is independent of δ\delta. This result is based on a new and efficient "accuracy boosting" algorithm that takes as input coarse estimates of the true means and in time poly(k,d,1/δ)poly(k,d, 1/\delta) outputs estimates of the means up to arbitrary accuracy δ\delta assuming the separation between the means is Ω(min{logk,d})\Omega(\min\{\sqrt{\log k},\sqrt{d}\}) (independently of δ\delta). We also present a computationally efficient algorithm in d=O(1)d=O(1) dimensions with only Ω(d)\Omega(\sqrt{d}) separation. These results together essentially characterize the optimal order of separation between components that is needed to learn a mixture of kk spherical Gaussians with polynomial samples.Comment: Appeared in FOCS 2017. 55 pages, 1 figur
    corecore